Augmenting in situ lake level measurements with Earth observation satellites

Bu çalışmada, Ice, Cloud and Land Elevation Satellite (ICESat) altimetre verileri, 2008 yılında kurumuş olan Akşehir Gölü (AG)'nün su seviyelerini tespiti için MODIS kar örtüsü haritaları ile birlikte kullanılmıştır. AG’deki su seviyesi, 2004 yılında eşel seviyesinin altına düştüğü için, eşel ve ICESat-MODIS (ICEM) tabanlı göl su seviyeleri bire bir karşılaştırılamamıştır. Landsat tabanlı göl yüzey alanı çalışmaları ile AG batimetrisinin (LAB) birlikte kullanılması, ICEM tabanlı su seviyelerinin değerlendirilebilmesine imkan sağlamıştır. ICEM ve LAB arasındaki farklar -0.09m ve 0.32m olup, sadece ICESat tabanlı çalışmaların standart sapması olan 0.02m ila 0.27m değerlerine yakın olduğu görülmüştür. ICEM'in ardışık kış ve ilkbahar mevsimleri arasında hesaplanan minimum ve maksimum suyu seviyesi değişiklikleri 0.30m ve 1.35m olarak tarihsel gözlem aralığındadır. ICEM su seviyeleri, Ekim 2005'te rüzgar hızlarının en yüksek olduğu süre boyunca en yüksek standart sapmaları göstermiştir.

Augmenting in situ lake level measurements with Earth observation satellites

In here, Ice, Cloud and Land Elevation Satellite (ICESat) altimeter data were used with MODIS snow cover maps to determine Akşehir Lake/wetland water levels which dried up in 2008. Since the water level dropped below the gage in 2004, the ICESAT-MODIS (ICEM)-based lake water levels could not be compared with gage levels. Instead, combined use of Landsat-based lake surface area studies and Akşehir Lake bathymetry (LAB) enabled ICEM assessment. ICEM and LAB differences are between -0.09m and 0.32m and close to the standard deviations (s.d.) of pure ICESat-based studies (0.02m-0.27m). The minimum and maximum water surface elevation changes of ICEM between consecutive winter and spring are 0.30m and 1.35m and are in the historical range. ICEM showed highest s.d. during October 2005, when the wind velocities were highest.  

___

  • [1] DSI, Akşehir ve Eber Gölleri Sulak alan yönetim planı 2008-2012, Devlet Su İṣleri Genel Müdürlüğü, 2008.
  • [2] Ramsar, http://www.ramsar.org/wetland/turkey (Son erişim tarihi 2 Şubat 2017).
  • [3] Sener, E., Davraz, A., Sener, S., Investigation of Akşehir and Eber Lakes (SW Turkey) coastline change with multitemporal satellite images, Water Resour. Manage., 24, 727-745, 2010, DOI 10.1007/s11269-009-9467-5.
  • [4] Yıldırım, Ü., Erdoğan S., Uysal M., Changes in the coastline and water level of the Akşehir and Eber Lakes between 1975 and 2009, Water Resour. Manage., 24,941-962, 2011, DOI: 10.1007/s11269-010-9735-4.
  • [5] Bahadır M., Akşehir gölü’nde alansal değişimlerin uzaktan algılama teknikleri ile belirlenmesi, Marmara Coğrafya Dergisi, 28, 246-275, 2013.
  • [6] Smith, L. C., Satellite remote sensing of river inundation area, stage and discharge: a review, Hydrological Processes, 11(10), 1427-1439, 1997.
  • [7] Munyati, C., Wetland change detection on the Kafue Flats, Zambia, by classification of a multitemporal remote sensing image dataset, International Journal of Remote Sensing, 21, 1787–1806, 2000.
  • [8] Frazier, P. S., Page, K.J., Water body detection and delineation with Landsat TM data, Photogrammetric Engineering and Remote Sensing, 66, 1461–1467, 2000.
  • [9] Rokni, K., Ahmad, A., Selamat, A., Hazini S., Water feature extraction and change detection using multitemporal Landsat imagery, Remote Sensing, 6(5), 4173-4189, 2014.
  • [10] Mueller, N., Lewis, A., Roberts, D., Ring, S., Melrose, R., Sixsmith, J., Lymburner, L., McIntyre, A., Tan, P., Curnow, S., Ip, A., Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia, Remote Sensing of Environment, 174, 341-352, 2016, doi:10.1016/j.rse.2015.11.003.
  • [11] White, L., Brisco, B., Dabboor, M., Schmitt, A., Pratt, A., A Collection of SAR Methodologies for Monitoring Wetlands, Remote Sens.,7, 7615-7645, 2015.
  • [12] Baghdadi, N., Bernier, M., Gautier, R., Neeson, I., Evaluation of Cband SAR data for wetlands mapping, International Journal of Remote Sensing, 22, 71–88, 2001.
  • [13] Zeng, C., Wang J., Huang, X., Bird, S., Luce, J. J., Urban water body detection from the combination of high-resolution optical and SAR images, Urban Remote Sensing Event (JURSE), 2015 Joint, Lausanne, 2015, 1-4. doi: 10.1109/JURSE.2015.7120525.
  • [14] Yamazakia, D., Triggb, M. A., Ikeshimac, D., Development of a global ~ 90 m water body map using multi-temporal Landsat images, Remote Sensing of Environment, 171, 337-351, 2015, doi:10.1016/j.rse.2015.10.014.
  • [15] Gu, Y.,Wylie B. K., Developing a 30-m grassland productivity estimation map for central Nebraska using 250-m MODIS and 30-m Landsat-8 observations, Remote Sensing of Environment, 171, 291-298, 2015, doi:10.1016/j.rse.2015.10.018.
  • [16] Wulder, M.A., Whitea, J. C., Lovelandb, T. R., Woodcockc, C. E., Belwardd, A. S., Cohene, W. B., Fosnightb, E. A., Shawf, J., Masekg, J. G., Royh, D. P., The global Landsat archive: Status, consolidation, and direction, Remote Sensing of Environment, 185,271-283, 2015, doi:10.1016/j.rse.2015.11.032.
  • [17] Fisher, A., Flood, N., Danaher, T., Comparing Landsat water index methods for automated water classification in eastern Australia, Remote Sensing of Environment, 175, 167-182, 2016, doi:10.1016/j.rse.2015.12.055.
  • [18] Song, X.-P., Sexton, J. O., Huang, C., Channan, S., Townshend, J. R., Characterizing the magnitude, timing and duration of urban growth from time series of Landsat-based estimates of impervious cover, Remote Sensing of Environment, 175, 1-13, 2016, doi:10.1016/j.rse.2015.12.027.
  • [19] Neigha, C. S.R., Maseka, J. G., Bourgetb, P., Rishmawic, K., Zhaoc, F., Huangc, C., Cooka, B. D., Nelsona, R.F., Regional rates of young US forest growth estimated from annual Landsat disturbance history and IKONOS stereo imagery, Remote Sensing of Environment, 173, 282-293, 2016, doi:10.1016/j.rse.2015.09.007.
  • [20] Ormeci, C., Ekercin, S., An assessment of water reserve changes in Salt Lake, Turkey, through multi-temporal Landsat imagery and real-time ground surveys, Hydrol Process, 21, 1424–1435, 2007, DOI: 10.1002/hyp.6355.
  • [21] Reis, S., Yilmaz, H. M., Temporal monitoring of water level changes in Seyfe Lake using remote sensing, Hydrological Processes, 22, 4448-4454, 2008, doi:10.1002/hyp.7047.
  • [22] Zhang, G. ,Xie, H., Kang, S. ,Yi, D. and Ackley, S. F., Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003-2009), Remote Sens. Environ, 115(7), 1733–1742, 2011.
  • [23] https://tr.wikipedia.org/wiki/Göller_Yöresi (En son erişim tarihi 2 Şubat 2017)
  • [24] Çatal, A. ve Dengiz, O., Akşehir gölünün Akşehir çölüne dönüşü süreci ve etki eden faktörler, Toprak Su Dergisi, 4(1),18-26, 2015
  • [25] Birdlife International, http://www.birdlife.org/datazone/sitefactsheet.php?id=765 (Son erişim tarihi 2 Şubat 2017)
  • [26] Durduran, S.S., Coastline change assessment on water reservoirs located in the Konya Basin Area, Turkey, using multitemporal landsat imagery, Eviron Monit Assess, 164, 453-461, 2010 doi:10.1007/s10661-009-0906-9.
  • [27] Zwally, H. J., Schutz, B., Abdalati, W., Abshire, J., Bentley, C., Brenner, A., et al., ICESat's laser measurements of polar ice, atmosphere, ocean, and land, Journal of Geodynamics, 34(3–4), 405−445, 2002.
  • [28] ICESat. https://icesat.gsfc.nasa.gov/icesat/index.php (En son eriṣim 11 February 2017)
  • [29] Spinhirne, J. D., S. P. Palm, W. D. Hart, D. L. Hlavka, and E. J. Welton, Cloud and aerosol measurements from GLAS: Overview and initial results, Geophys. Res. Lett., 32, L22S03, 2005, doi:10.1029/2005GL023507.
  • [30] NSIDC, http://nsidc.org/data/docs/daac/glas_icesat_l1_l2_global_altimetry.gd.html, (En son erişim 23 Şubat 2017)
  • [31] Kwok, R., Zwally, H. J., Yi, D., ICESat observations of Arctic sea ice: a first look. Geophysical Research Letters, 31, L16401, 2004
  • [32] Srivastava, P., Bhambri, R., Kawishwar, P., Dobhal, D. P., Water level changes of high altitude lakes in Himalaya–Karakoram from ICESat altimetry, J. Earth Syst. Sci.122, 1533–1543, 2013.
  • [33] Khvorostovsky, K., Rampal, P., On retrieving sea ice freeboard from ICESat laser altimeter, The Cryosphere, 10, 2329–2346, 2016.
  • [34] Zhang, G., Xie H., Duan S., Tian, M., and Yi, D., Water level variation of Lake Qinghai from satellite and in situ measurements under climate change, J of Applied Remote Sensing, 2011
  • [35] Ke, L., Dinga, X., Song, C., Heterogeneous changes of glaciers over the western Kunlun Mountains based on ICESat and Landsat-8 derived glacier inventory, Remote Sensing of Environment, 168, 13-23, 2015, doi:10.1016/j.rse.2015.06.019.
  • [36] Wang, Y., Li, G., Ding, J., Guo, Z., Tang, S., Wang, C., Huang, Q., Liu, R., Chen, J. M., A combined GLAS and MODIS estimation of the global distribution of mean forest canopy height, Remote Sensing of environment, 174, 24-43, 2016, doi:10.1016/j.rse.2015.12.00.
  • [37] MODIS. http://modis.gsfc.nasa.gov/data/dataprod/mod10.php (Son erişim tarihi 21 Şubat 2017)
  • [38] Hall, D. K., Riggs, G. A., Salomonson, V. V., Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data, Remote Sens Environ, 54:127–14, 1995.
  • [39] Ault, T. W., Czajkowski, K. P., Benko, T., Coss, J., Struble, J., Spongberg, A., Templin, M., Gross, C., Validation of the MODIS snow product and cloud mask using student and NWS cooperative station observations in the Lower Great Lakes Region, Remote Sensing of Environment 105, 341–353, 2006.
  • [40] Hall, D. K., Riggs, G. A., Accuracy assessment of the MODIS snow-cover products, Hydrol Process, 21:1534–1547, 2007.
  • [41] Pu, Z., Xu, L., Salomonson, V. V., MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau, Geopyhs Res Lett, 34:L06706., 2007 doi:10,1029/2007GL029262.
  • [42] Tekeli, A. E., Akyürek, Z, Şorman, A. A., Şensoy, A., Şorman, A. U., Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey, Remote Sens Environ, 97, 216–230, 2005.
  • [43] Tekeli, A. E., Sensoy, A., Sorman, A. A., Akyurek, Z., Sorman, A. U., Accuracy assessment of MODIS daily snow albedo retrievals with in situ measurements in Karasu Basin, Turkiye, Hydrological Processes, 20, 705-721, 2006.
  • [44] Dӧnmez S. “Assessing Akşehir Lake’s recession using meteorological and satellite data” (in Turkish). Journal of The Faculty of Engineering and Architecture of Gazi University. 2017, Accepted for publication.
  • [45] ICESat2. http://icesat.gsfc.nasa.gov/icesat2/science_objs.php (En son eriṣim 20 February 2017).