Çukurova Koşullarında Yetiştirilen Tatlı Sorgum Genotiplerinin Selülozik Biyoetanol Veriminin Belirlenmesi

Tatlı sorgum bitkisi ve özsuyu alındıktan sonra geriye kalan posası birinci nesil biyoetanol, hayvan yemi, gübre, biyoyakıt ve selülozik biyoetanol üretimi gibi çeşitli amaçlar için değerlendirilmektedir ve geniş kullanım alanlarından dolayı gün geçtikçe önem kazanmaktadır. Bu çalışmada, farklı tatlı sorgum genotiplerinin özsuyu alındıktan sonra geriye kalan saplarında (posasında) teorik selülozik biyoetanol potansiyelinin belirlenmesi amaçlanmıştır. Bu amaçla yurt içi ve yurt dışındaki değişik kaynaklardan temin edilen 21 farklı tatlı sorgum (Sorghum bicolor var. saccharatum (L.) Mohlenbr.) genotipi materyal olarak kullanılmıştır. Tarla denemeleri, Çukurova (Adana) ikinci ürün koşullarında 2016 ve 2017 yıllarında yürütülmüştür. Bitkilerin hasadı, salkımdaki tanelerin süt-hamur olum dönemine denk gelen tarihlerde yapılmıştır. Hasat edilen bitkilerin yaprakları ve salkımları ayrıldıktan sonra saplar ekstrakte edilip özsuyu alınmıştır. Özsuyu alınan saplar (posalar) kurutulduktan sonra selüloz ve hemiselüloz analizleri yapılmış ve teorik selülozik biyoetanol verimleri kuru madde bazında L ton-1 ve L da-1 cinsinden hesaplanmıştır. Çalışma sonucunda iki yıllık ortalamalara göre; tatlı sorgum genotiplerinin selüloz içeriğinin %33.21-45.13, hemiselüloz içeriğinin %20.63-25.36, teorik selülozik biyoetanol veriminin ise 183.7-231.0 L ton-1 kuru madde (KM) ve 297.4-767.6 L da-1 (KM) arasında değiştiği saptanmıştır. Araştırmada özsuyu alındıktan sonra kalan posanın selülozik biyoetanol üretimi amacıyla kullanılabileceği ve Grass1, Tracy, UNL-Hyb-3 ve No91 genotiplerinin birim alanda 600 L da-1 üzerinde selülozik biyoetanol üretme kapasitesi ile öne çıkan genotipler oldukları görülmektedir. Tatlı sorgum bitkisinin özsuyundan biyoetanol elde edilmesi ve ayrıca geriye kalan küspesinden de selülozik biyoetanol üretilmesi ile yüksek biyokütle potansiyeline sahip bitkinin tamamından yararlanılarak daha fazla biyoetanol elde edilebileceği ve böylece yenilenebilir enerji kaynağı olarak sürdürülebilirlik, çevre ve ekonomi gibi çeşitli açılardan avantajlar sağlanabileceği sonucuna ulaşılmaktadır.

Determination of Cellulosic Bioethanol Yield of Sweet Sorghum Genotypes Grown Under Cukurova Conditions

Sweet sorghum and its bagasse of sweet sorghum plant which is left after extracting of its juice is used for various purposes such as first generation bioethanol, animal feed, fertilizer, biofuel and cellulosic bioethanol production and it has gained significance because of its broad use areas day by day. In this study, it was aimed to determine the theoretical cellulosic bioethanol potential of the remaining stalks (bagasse) of different sweet sorghum genotypes after extraction of its juice. For this reason, 21 different sweet sorghum (Sorghum bicolor var. saccharatum (L.) Mohlenbr.) genotypes obtained from different domestic and foreign sources were used as material. Field trials were carried out under second crop conditions in Cukurova (Adana) region in 2016 and 2017. The plants were harvested on dates that coincided with the milk-dough period of the grains in the cluster. After the leaves and inflorescences of the harvested plants were removed, the stalks were extracted and the juice was taken. Theoretical cellulosic bioethanol yields were calculated on the basis of dry matter (DM) in L ton-1 and L da-1 by performing cellulose and hemicellulose analyzes after the stalks (bagasse) was dried. As a result of the study, according to the two-year averages; it was determined that the cellulose content and hemicellulose content of sweet sorghum genotypes and theoretical cellulosic bioethanol yield ranged from 33.21% to 45.13%, from 20.63 to 25.36%, from 183.7 to 231.0 L ton-1 dry matter (DM) and from 297.4 to 767.6 L da-1 (DM), respectively. In the research, it is seen that the remaining bagasse after the removal of juice can be used for cellulosic bioethanol production and Grass1, Tracy, UNL-Hyb-3 and No91 genotypes are prominent genotypes having the capacity to produce cellulosic bioethanol over 600 L da-1 per unit area. It is concluded that if bioethanol is obtained from the juice of sweet sorghum plant and also cellulosic bioethanol is produced from its bagasse remaining after extraction of its juice more bioethanol can be supplied from the unit area by using the whole plant having a high biomass potential and thus it can be provided advantages in terms of different aspects such as sustainability, environment and economy as a renewable energy source.

___

  • Arif, A.B., Budiyanto, A., Diyono, W., Hayuningtyas, M., Marwati. T., Sasmitaloka, K.S., Richana, N. (2019). Bioethanol Production From Sweet Sorghum Bagasse Through Enzymatic Process. 2nd International Conference on Agriculture Postharvest Handling and Processing IOP Conf. Series: Earth and Environmental Science 309. https://doi:10.1088/1755-1315/309/1/012033.
  • Aybek, A., Üçok, S., İspir, M.A., Bilgili, M.E. (2015). Digital mapping and determination of biogas energy potential of usable animal manure and cereal straw wastes in Turkey. Journal of Tekirdag Agricultural Faculty, 12(3): 109-120.
  • Badger, P.C. (2002). Ethanol from cellulose: A general review, Trends in new crops and new uses, 17-21. In: J. Janick and A. Whipkey (Eds.), Trends in new crops and new uses. ASHS Press, Alexandria, VA. https://www.hort.purdue.edu/newcrop/ncnu02/pdf/badger.pdf, (Erişim tarihi: 20.08.2021).
  • Barcelos, A.C., Maeda, R., Anna, L., Pereira Jr, N. (2016). Sweet sorghum as a whole-crop feedstock for ethanol production. Biomass and Bioenergy, 94: 46-56. https://doi.org/10.1016/j.biombioe.2016.08.012
  • Batog, J., Frankowski, J., Wawro, A., Lacka, A. (2020). Bioethanol production from biomass of selected sorghum varieties cultivated as main and second crop. Energies, 13: 6291. https://doi.org/10.3390/en13236291.
  • Bazaluk, O., Havrysh, V., Fedorchuk, M., Nitsenko, V. (2021). Energy assessment of sorghum cultivation in southern Ukraine. Agriculture, 11: 695. https://doi.org/10.3390/agriculture11080695.
  • Chauhan, N.M., Hajare, S.T., Mamo, B., Madebo, A.A. (2021). Bioethanol production from stalk residues of chiquere and gebabe varieties of sweet sorghum. International Journal of Microbiology, 12: 1-16. https://doi.org/10.1155/2021/6696254.
  • Cotton, J., Burow, G., Acosta-Martinez, V., Moore-Kucera, J. (2013). Biomass and cellulosic ethanol production of forage sorghum under limited water conditions. Bioenergy Research, 6: 711-718. https://doi.10.1007/s12155-012-9285-0
  • Develi, C.H., Aybek, A., Üçok, S. (2021). Antep fıstığı kabuğu ve zeytin küspesinden biyoyakıt amaçlı pelet elde edilmesi. Tekirdağ Ziraat Fakültesi Dergisi, 18(4): 689-701.
  • Dolciotti, I., Mambell, S., Grandi, S., Ventur, G. (1998). Comparison of two sorghum genotypes for sugar and fiber production. Industrial Crop Production, 7: 265-272.
  • Dweikat, I. (2014). Sorghum diversity paper, sweet energy crop article. http://agronomy.unl.edu/sweetsorghum, (Erişim tarihi: 07.03.2020).
  • Guimarães, C.C., Simeone, M.L.F., Parrella, R.A.C., Sena, M.M. (2014). Use of NIRS to predict composition and bioethanol yield from cell wall structural components of sweet sorghum biomass. Microchemical Journal, 117: 194-201.
  • Han, K.J., Pitman, W.D., Kim. M., Day, D.F., Alison, M.W., McCormick, M.E., Aita, G. (2013). Ethanol production potential of sweet sorghum assessed using forage fiber analysis procedures. GCB Bioenergy, 5: 358-366. https://doi:10.1111/j.1757-1707.2012.01203.x
  • Howard, R.L., Abotsi, E., Jansen van Rensburg, E.L.J, Howard, S. (2003). Lignocellulose biotechnology: issues of bioconversion and enzyme production. African Journal of Biotechnology, 2(12): 602-619. https://doi: 10.5897/AJB2003.000-1115
  • Khalil, S.R.A., Abdelhafez, A.A., Amer, E.A.M. (2015). Evaluation of bioethanol production from juice and bagasse of some sweet sorghum varieties. Annals of Agricultural Sciences, 60(2): 317-324. https://doi.org/10.1016/j.aoas.2015.10.005
  • Kutlu, H.R. (2008). Yem Değerlendirme ve Analiz Yöntemleri. Çukurova Üniversitesi Ziraat Fakültesi, Zootekni Bölümü Ders Notu, 68 S. http://www.zootekni.org.tr/upload/File/sunular/tm.pdf. (Erişim tarihi: 04.08.2020).
  • Mahapatra, A.K., Ekefre D.E., Pattanaik N.K., Jena U., Williams A.L., Latimore M. (2017). Thermal properties of sweet sorghum bagasse as a function of moisture content. Agricultural Engineering International: CIGR Journal, 19(4): 108-113.
  • Mahdy, E.M.E., Ramadan, H.A., Emara, M.A. (2018). Suitability of some sweet sorghum varieties for bioethanol production. Journal of Agricultureal Chemistry and Biotechnology, 9(9): 205-210.
  • Marx, S., Ndaba, B., Chiyanzu, I., Schabort, C. (2014). Fuel ethanol production from sweet sorghum bagasse using microwave irradiation. Biomass and Bioenergy, 65: 145-150. https://10.1016/j.biombioe.2013.11.019
  • Mastrorilli, M., Katerji N., Rana G. (1999). Productivity and water use efficiency of sweet sorghum as affected by soil water deficit occurring at different vegetative growth stages. European Journal of Agronomy, 11: 207-215.
  • Maw, M.J.W., Houx, J.H., Fritschi, F.B. (2017). Maize, sweet sorghum, and high biomass sorghum ethanol yield comparison on marginal soils in Midwest USA. Biomass and Bioenergy, 107: 164-171. https:// doi:10.1016/J.BIOMBIOE.2017.09.021
  • Rakhmetova, S.O., Vergun, O.M., Blume, R.Y., Bondarchuk, O.P., Shymanska, O.V., Tsygankov, S.P., Yemets, A.I., Blume, Y.B., Rakhmetov, D.B. (2020). Ethanol production potential of sweet sorghum in North and Central Ukraine. Open Agriculture Journal, 14: 321-338.
  • Raud, M., Tutt, M., Olt, J., Kikas, T. (2015). Effect of lignin content of lignocellulosic material on hydrolysis efficiency. Agronomy Research, 13(2): 405-412.
  • Ritter K.B., McIntyre C.L., Godwin I.D., Jordan D.R., Chapman S.C. (2007). An assessment of the genetic relationship between sweet and grain sorghums, within Sorghum bicolor ssp. bicolor (L.) Moench, using AFLP markers. Euphytica, 157: 161-176.
  • Rivera-Burgos, L.A., Volenec, J.J., Ejeta, G. (2019). Biomass and bioenergy potential of brown midrib sweet sorghum germplasm. Frontiers in Plant Science, 10: 1142. https://doi:10.3389/fpls.2019.01142.
  • Saini, J.K., Saini, R., Tewari, L. (2015). Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. Biotechnology, 5(4): 337-353. https://doiI 10.1007/s13205-014-0246-5
  • Shinde, M.S., Repe, S.S., Gaikwad, A.R., Gadakh, S.R. 2013. Physio-biochemical assessment of sweet sorghum genotypes during post rainy season. Journal Academia Industrial Research, 1(8):501-507.
  • Steduto, P., Katerji N., Puertos-Molina, H., Unlu, M., Mastrorilli, M., Rana, G. (1997). Water use efficiency of sweet sorghum under water stress conditions. Gas exchange investigations at leaf and canopy scales. Field Crops Research, 54: 221-234.
  • Su, M.Y., Tzeng, W.S., Shyu, Y.T. (2010). An analysis of feasibility of bioethanol production from Taiwan sorghum liquor waste. Bioresource, Technology, 101: 6669–6675.
  • Sun, Y., Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83(1): 1-11.
  • Tang, C., Li, S., Li, M., Xie, G.H. (2018). Bioethanol potential of energy sorghum grown on marginal and arable lands. Frontiers in Plant Science, 9: 440, 1-11. https://doi:10.3389/fpls.2018.00440.
  • Umagiliyage, A.L., Choudhary, R., Liang, Y., Haddock, J., Watson, D.G. (2015). Laboratory scale optimization of alkali pretreatment for improving enzymatic hydrolysis of sweet sorghum bagasse. Industrial Crops and Products, 74: 977-986. http:// doi:10.1016/j.indcrop.2015.05.044
  • Van Soest, P.J., Robertson, J.B., Lewis, B.A. (1991). Method for dietary fiber, neutral detergent fiber and nostarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74: 3583-3597.
  • Wongwatanapaiboon, J., Kangvansaichol, K., Burapatana, V., Inochanon, R., Winayanuwattikun, P., Yongvanich, T., Chulalaksananukul, W. (2012). The potential of cellulosic ethanol production from grasses in Thailand. Journal of Biomedicine and Biotechnology, 2012:1-10, doi:10.1155/2012/303748.
  • Wyman, C.E., Bain, R.E., Hinman, N.D., Stevens, D.J. (1993). Ethanol and Methanol from Cellulosic Biomass. In: Johansson, T.B., Kelly, H., Reddy, A.K.N., Williams, R. (Eds.), Renewable Energy. Island Press, Washington DC, 865-924.
  • Xiao, M.Z., Sun, Q., Hong, S., Chen, W.J., Bo, P., Du, Z.Y., Yang, W.B., Sun, Z., Yuan, T.Q. (2021). Sweet sorghum for phytoremediation and bioethanol production. Journal of Leather Science and Engineering, 3: 32. https://doi.org/10.1186/s42825-021-00074-z
  • Yaşar, B. (2009). Alternatif enerji kaynağı olarak biyodizel üretim ve kullanım olanaklarının Türkiye tarımı ve AB uyum süreci açısından değerlendirilmesi. (Doktora Tezi) Çukuroava Üniversitesi Fen Bilimleri Enstitüsü, Adana.
  • Yu, M., Li, J., Li, S.Z., Ran, D., Jiang ,Y., Fan, G., Zhao, G., Chang, S. (2014). A cost-effective integrated process to convert solid-state fermented sweet sorghum bagasse into cellulosic ethanol. Applied Energy, 115: 331-336. https://doi: 10.1016/j.apenergy.2013.11.020
  • Zhang, J., Ma, X., Yu, J., Zhang, X., Tan, T. (2011). The effects of four different pretreatments on enzymatic hydrolysis of sweet sorghum bagasse. Bioresource Technology, 102: 4585-4589. https://doi.org/10.1016/j.biortech.2010.12.093
  • Zhao, Y.L., Dolat, A., Steinberger, Y., Wanga, X., Osman, A., Xie, G.H. (2009). Biomass yield and changes in chemical composition of sweet sorghum cultivars grown for biofuel. Field Crops Research, 111: 55-64. https://doi.org/10.1016/j.fcr.2008.10.006
Tekirdağ Ziraat Fakültesi Dergisi-Cover
  • ISSN: 1302-7050
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2004
  • Yayıncı: Namık Kemal Üniv. Tekirdağ Ziraat Fak.
Sayıdaki Diğer Makaleler

Yonca Üretiminde Enerji Tüketimi: Hasat Sistemleri Arasında Bir Karşılaştırma

Muttalip GÜNGÖRMEZ, Fulya TAN, Mehmet Fırat BARAN

Analysis of Energy Use Efficiency and Greenhouse Gas Emission in Rainfed Canola Production (Case study: Çanakkale Province, Turkey)

Sakine ÖZPINAR

Benchmarking of Irrigation Performance in Karataş and Karaçal Irrigation Associations

Ahmed Qadar ABDİSAMAD1, Mehmet SENER

Buğdayda Farklı Fusarium culmorum İzolatları ile Pratylenchus thornei Etkileşimi

Fatma Gül GÖZE ÖZDEMİR, Şerife Evrim ARICI, İbrahim Halil ELEKCİOĞLU

A Comparison of Acrylamide Contents of Some Nuts Produced Organically and Conventionally

Baha Aydın YILMAZ, Işın AYDIN ÜNSAL, Murat TAŞAN

Traditional Machine Learning-Based Classification of Cashew Kernels Using Colour Features

Geofrey Prudence BAİTU, Omsalma Alsadig Adam GADALLA, Y. Benal ÖZTEKİN

Biyogaz Tesislerinde Üretilen Gübrenin Değerlendirilme Metotları ve Fizibiliteye Etkisi

Volkan ÇOBAN

Taze Kesilmiş Pırasada Askorbik Asit Uygulamasının Soğukta Depolama Boyunca Kalite Değişimine Etkisi

Bekir GÜLAL, Mehmet Ali KOYUNCU

Geleneksel ve Analize Dayalı Kimyevi Gübre Uygulamasının Mısır Verimi ve Yaprakta Bitki Besin Elementleri İçeriğine Etkisi

Nureddin ÖNER, Filiz ÖNER

Examination of Soil Analysis Applications and Soil Analysis Subsidies in terms of Producers in Edirne and Tekirdağ Provinces

Başak AYDIN, Erol ÖZKAN, Emel KAYALI, Volkan ATAV, Mehmet Ali GÜRBÜZ, İlker KURŞUN, İhsan Engin KAYHAN