HASSAS DÖKÜM YÖNTEMİ İLE ÜRETİLEN ALAŞIMLARIN MİKROYAPI VE SERTLİK ÖZELLİKLERİNİN ARAŞTIRILMASI

Bu çalışmada, metalik biyomalzemeler grubundan yüksek mekanik ve biyouyumluluk özellikleri ile dikkat çeken alaşımlardan; Ti6Al4V alaşımı ve 316L paslanmaz çelik malzemelerin hassas döküm yönetim ile üretilebilirliği üzerine çalışılmıştır. Deneysel çalışmalar, hassas döküm yöntemi ile Ti6Al4V ve 316L alaşımlarının üretilebileceğini göstermiştir. Mikroyapıya bağlı olarak, sertlik değerleri geliştirilebilen ve kontrol edilebilen özelliklerin önemli bir aşamasını oluşturmaktadır. Bu amaçla hassas döküm yöntemi ile üretimi gerçekleştirilen Ti6Al4V alaşımı ve 316 L paslanmaz çelik malzemelerin mikroyapı ve sertlik özellikleri irdelenmiştir.

THE INVESTIGATION OF MICROSTRUCTURE AND HARDNESS PROPERTIES OF ALLOYS PRODUCED BY INVESTMENT CASTING METHOD

In this study, reducibility of Ti6Al4V alloy and 316L stainless steel materials which are from the group of metallic biomaterials with their high mechanical and biocompatibility properties by investment casting method were investigated. Experimental studies showed Ti6Al4V and 316L alloys can be produced by investment casting method. Depending on the microstructure, hardness values​​ constitute an important step of the properties that can be developed and controlled. To this end, Microstructure and hardness properties of Ti6Al4V alloy and 316L stainless steel materials produced by investment casting method were investigated.

___

  • [1] Beeley, P., (2001). Foundry Technology, Second Edition, Butter worth Heinemann, Oxford.
  • [2] Clegg, A.J., (1991). Precision Casting Processes, Pergamon Pres, Oxford. [3] Aran, A., (2007). Döküm Teknolojisi-İmal Usulleri, İTÜ-Makina Fakültesi.
  • [4] Akman, E., Demir, A., Canel, E., and Sınmazçelik, T., (2008). Laser Welding of Ti6Al4V Titanium Alloys, Journal of Materials Processing Technology., 209(8), 3705-3713.
  • [5] Ding, R., Gou, Z.X., and Wilson, A., (2002). Microstructual Evolution of a Ti6Al4V Alloy During Thermochemnical Processing, J.Materials Science and Enginering A, 327, 233-245.
  • [6] Ion, J.C., (2005). Laser Processing of Engineering Materials: Principles, Procedure and Industrial Application, Elsevier, Oxford.
  • [7] E.W.Collings, (1984). The Physical Metallurgy of Titanium Alloys, American Society for Metals.
  • [8] Ming-chen, H., (1999). Thermohydrogen Treatment of Titanium Alloys, Aerospace Materials and Technology, (1), 23-27.
  • [9] Applications for Titanium Alloys, (2003). International Titanium Association.
  • [10] Modgil, A., (2003). “Effect of High Speed Maching on Surfacee Topography of Titanium Alloy (Ti6Al4V). A Thesis Presented to the Graduate School of the University of Florida.
  • [11] ASTM, (2000). Introduction to Stainless Steels, Materials Park, Ohio, USA.
  • [12] Davis, J.R., (1994). Stainless Steels, ASM International, OHIO, USA.
  • [13] Smith, W.F., (2000). Paslanmaz Çelikler, Mühendislik Alaşımlarının Yapı ve Özellikleri, Cilt: 1, Ankara, 169-214.
  • [14] Tülbentçi, K. ve Kaluç, E., (1992). Geçmişten Günümüze Paslanmaz Çelikler, META, No 20, 47-52.
  • [15] Park, J. ve Lakes, R.S., (2007). Biomaterials An Introduction (3. Baskı). New York: Springer Science Business Media.
  • [16] Berberich, F., Matz, W., Richter, E., Schell, N., Kreißig, U., and Möller, W., (2000). Structural Mechanisms of the Mechanical Degradation of Ti6Al4V Alloys in Situ Study During Annealing. Surface and Coatings Technology, (128), 450-454.
  • [17] Emre, E.H., Kaçar, R., Bülbül, A., and Manisalı, B., (2017). AISI 316L-AISI 2205 Farklı Paslanmaz Çelik Çiftinin Kaynak Kabiliyeti, Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, Cilt:6, Sayı:1, 244-256.
  • [18] Cvijovic-Alagic, I., Mitrović, S., Cvijović, Z., Veljović, D., Babić, M., and Rakin, M., (2009). Influence of the Heat Treatment on the Tribological Characteristics of the Ti-Based Alloy for Biomedical Applications, Tribology in Industry, Vol:31, No:3, 17-22.
  • [19] J. Busby, P. Maziasz, J. McDuffee, A. Rowcliffe, M. Santella, M. Sokolov, M., Teysseyre, S., and Was, G., (2008). Improved Cast Stainless Steels for ITER Shield Modules; Annual Report.