Santrifüj Pompa Çarklarındaki Hidrolik Kuvvetler ve Yapılan Çalışmaların Değerlendirilmesi

Santrifüj pompalar, içerisinde döner bir mil üzerine yataklandırılmış, üzerinde belli sayıda kanatların bulunduğu bir çark ve bu sayede suya hareket enerjisi kazandıran, mekanik enerjiyi hidrolik enerjiye çeviren makinelerdir. Çarkın bu hareketi sonucu istenen mesafeye istenen akışkanın transferi sağlanmaktadır. Akışkanın hareketi sonucunda akışın hızı, basıncı, gücü ve pompa tipi gibi bazı parametreler belirlenmektedir. Pompa tipini belirleyen en önemli unsur çarka suyun girişi ile çıkışı arasındaki açısal farklılıktır. Bu durumda pompalarda hidrolik akışın, akış biçimine göre hidrolik kuvvetlerin oluşmasına neden olmaktadır. Hidrolik kuvvet, pompalarda hidrolik akışkanın hareketinin zıt yönünde tepki kuvveti radyal ve eksenel kuvvetler olarak meydana gelmektedir. Radyal kuvvet, çark çevresindeki basınç dağılımını, eksenel kuvvet ise çark alt ve üst örtüsünün duvar boşluklarından geçen akış üzerindeki basınç dağılımları olarak pompa ve çark üzerinde oluşan kuvvetlerdir. Hidrolik kuvvetler, pompa mekanik ve hidrolik özelliklerini olumsuz yönde etkilemektedir. Pompa verimi düşerken, mekanik yapıda deformasyonlar meydana gelmektedir. Pompa enerji gereksiniminin artmasında etkili olan hidrolik kuvvetler titreşim ve gürültüye de neden olmaktadır. Bu derlemede pompalarda yaşanacak hidrolik kuvvetlerin olumsuz etkilerinin azaltılması yönünde yapılan çalışmalar incelenmiştir. Çalışmada, geleneksel derleme yöntemine bağlı kalınarak, santrifüj pompalarda meydana gelebilecek hidrolik kuvvetler ve kuvvetleri azaltmaya yönelik yapılan araştırmalar neticesindeki bulgular ortaya konulmuştur. Araştırma sonuçları incelendiğinde, genel olarak yapılacak uygulamaların pompa ve çarklarındaki yapısal değişiklik üzerine olacağı kanaatine varılmıştır. Yapısal değişikliklerin pompa hidrolik performans değerlerini değiştireceği bilinmektedir. Bu durumda pompalarda oluşacak hidrolik kuvvetlerin azaltılması için yapılacak çalışmalarda yapısal değişikliğin etkili olduğu ancak hidrolik performans değerlerini de etkileyeceği unutulmamalı ve değişiklik yaparken tasarım parametreleri de ihmal edilmemelidir.

___

  • Agostinelli, A., Nobles, D., ve Mockridge, C. R. (1960). An experimental investigation of radial thrust in centrifugal pumps.
  • European Commision. (2001). Study on improving the energy efficiency of pumps, 42-43.
  • Baun, D. O., ve Flack, R. D. (2003). Effects of volute design and number of impeller blades on lateral impeller forces and hydraulic performance. International Journal of Rotating Machinery, 9(2), 145-152. https://doi.org/10.1155/S1023621X03000137
  • Baysal, K. (1979). Tam santrifüj pompalar: hesap, çizim ve konstrüksiyon özellikleri. İstanbul Teknik Üniversitesi.
  • Biheller, H. J. (1965). Radial force on the impeller of centrifugal pumps with volute, semivolute, and fully concentric casings.
  • Boehning, F., Timms, D. L., Amaral, F., Oliveira, L., Graefe, R., Hsu, P. L., Schmitz-Rode, T., ve Steinseifer, U. (2011). Evaluation of hydraulic radial forces on the impeller by the volute in a centrifugal rotary blood pump. Artificial Organs, 35(8), 818-825. https://doi.org/10.1111/j.1525-1594.2011.01312.x
  • Cao, W. D., Dai, X., ve Hu, Q. X. (2015). Effect of impeller reflux balance holes on pressure and axial force of centrifugal pump. Journal of Central South University, 22(5), 1695-1706. https://doi.org/10.1007/s11771-015-2688-2
  • Chalghoum, I., Elaoud, S., Kanfoudi, H., ve Akrout, M. (2018). The effects of the rotor-stator interaction on unsteady pressure pulsation and radial force in a centrifugal pump. Journal of Hydrodynamics, 30(4), 672-681. https://doi.org/10.1007/s42241-018-0073-y
  • Çakır, E. (2013). Santrifüj Pompa Performansının ve Hidrolik Kuvvetlerinin Belirlenmesi (Yüksek Lisans tezi, Fen Bilimleri Enstitüsü).
  • Çalışır, S., ve Konak, M. (1997). Düşey milli derin kuyu pompasında eksenel açıklığın pompa karakteristiklerine etkisi. 17. Ulusal Tarımsal Mekanizasyon Kongresi, 779-789.
  • Godbole, V., Patil, R., ve Gavade, S. S. (2012). Axial thrust in centrifugal pumps–experimental analysis. In 15th International Conference on Experimental Mechanics, Porto/Portugal (pp. 22-27).
  • Guan, X. (2011). Modern pumps theory and design. China Astronaut. Beijing China, 35, 265-266.
  • Guelich, J., Jud, W., ve Hughes, S. F. (1987). Review of parameters influencing hydraulic forces on centrifugal impellers. Proceedings of the Institution of Mechanical Engineers, Part A: Power and Process Engineering, 201(3), 163-174. https://doi.org/10.1243/PIME_PROC_1987_201_021_02
  • Guo, S., ve Okamoto, H. (2003). An experimental study on the fluid forces induced by rotor-stator interaction in a centrifugal pump. International Journal of Rotating Machinery, 9(2), 135-144.https://doi.org/10.1155/S1023621X03000125
  • Güleren, K. M., Gürlek, C., ve Pınarbaşı, A. (2004). Santrifüj Pompanın Kanatlı Ve Kanatsız Difüzöründeki Akışın Sayısal İncelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 10(3), 389-394.
  • Gülich, J. F. (2020). Centrifugal pumps (Vol. 4). Berlin: Springer.
  • Gülmez, E. (2006). Pompalarda yüzey pürüzlülüğünün ve kaçakların performans üzerindeki etkilerinin incelenmesi (Yüksek Lisans Tezi, Bursa Uludag Üniversitesi.
  • Hao, Y., Tan, L., Liu, Y., Xu, Y., Zhang, J., ve Zhu, B. (2017). Energy performance and radial force of a mixed-flow pump with symmetrical and unsymmetrical tip clearances. Energies, 10(1), 57.https://doi.org/10.3390/en10010057
  • Hergt, P., ve Krieger, P. (1969, September). Paper 10: radial forces in centrifugal pumps with guide vanes. In Proceedings of the Institution of Mechanical Engineers, Conference Proceedings (Vol. 184, No. 14, pp. 101-107). Sage UK: London, England: SAGE Publications.https://doi.org/10.1243/PIME_CONF_1969_184_428_02
  • Hou, X., Cheng, Y., Yang, Z., Liu, K., Zhang, X., ve Liu, D. (2021). Influence of clearance flow on dynamic hydraulic forces of pump-turbine during runaway transient process. Energies, 14(10), 2830. https://doi.org/10.3390/en14102830 Igor Karassik, J. (2001). Pump Handbook. 3th.
  • Jia, X. Q., Zhu, Z. C., Yu, X. L., ve Zhang, Y. L. (2018). Internal unsteady flow characteristics of centrifugal pump based on entropy generation rate and vibration energy. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 233(3), 456-473. https://doi.org/10.1177/0954408918765289
  • Jin, F., Tao, R., ve Xiao, R. (2022). Study on Axial Clearance Size and Leakage of Canned Motor Pump under Axial Force Self-Balance State. In Journal of Physics: Conference Series (Vol. 2160, No. 1, p. 012082). IOP Publishing.https://doi.org/10.1088/1742-6596/2160/1/012082
  • Kang, C., ve Li, Y. (2015). The effect of twin volutes on the flow and radial hydraulic force production in a submersible centrifugal pump. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 229(2), 221-237.https://doi.org/10.1177/0957650914562920
  • Khalifa, A. E., Al-Qutub, A. M., ve Ben-Mansour, R. (2011). Study of pressure fluctuations and induced vibration at blade-passing frequencies of a double volute pump. Arabian Journal for Science and Engineering, 36(7), 1333-1345.https://doi.org/10.1007/s13369-011-0119-8
  • Korczak, A., Martsynkovskyy, V., Peczkis, G., ve Zahorulko, A. (2012). Diagnosis of the phenomenon of flow as an inspiration to inventions in the domain of constructing hydraulic machines. Procedia Engineering, 39, 286-302.https://doi.org/10.1016/j.proeng.2012.07.035
  • Nourbakhsh, A., Jaumotte, A., Hirsch, C., ve Parizi, H. B. (2008). Turbopumps and pumping systems. Springer Science & Business Media.
  • Özgür, C. (1964). Su makinaları dersleri. İstanbul Teknik Üniversitesi: Teknik Okulu Yayınları.
  • Sefacı, S., Babayiğit, O., ve Koçak, S. (2022). Deneysel Tasarım Yöntemleri ile Bir Santrifüj Pompa Çarkında Dengeleme Deliği Tasarım Optimizasyonu. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 11(2), 436-449. https://doi.org/10.17798/bitlisfen.1017804
  • Shim, H. S., Afzal, A., Kim, K. Y., ve Jeong, H. S. (2016). Three-objective optimization of a centrifugal pump with double volute to minimize radial thrust at off-design conditions. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 230(6), 598-615.https://doi.org/10.1177/0957650916656544
  • Shimura, T., Kawasaki, S., Uchiumi, M., Kimura, T., ve Matsui, J. (2012). Internal flow and axial thrust balancing of a rocket pump. Journal of fluids engineering, 134(4).https://doi.org/10.1115/1.4006470
  • Sulzer (1989). Centrifugal Pump Handbook, Elsevier Applied Science, London.
  • Tan, M., Guo, B., Liu, H., Wu, X., ve Wang, K. (2015). Investigation of radial force and hydraulic performance in a centrifugal pump with different guide vane outlet angle. Journal of Vibroengineering, 17(6), 3247-3260.
  • Turan, M. (2017). Uçtan emişli santrifüj pompada eksenel yükü etkileyen parametrelerin had yöntemi ile incelenmesi (Yüksek Lisans Tezi, Sakarya Üniversitesi).
  • Türkmen, A. (2020). Radyal pompalarda eksenel yükün belirlenmesi ve dengelenmesi (Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi.
  • Wang, C., Shi, W., ve Zhang, L. (2013). Calculation formula optimization and effect of ring clearance on axial force of multistage pump. Mathematical Problems in Engineering, 2013. https://doi.org/10.1155/2013/749375
  • Weigang, L., Jinfeng, Z., ve Shouqi, Y. (2007). Now method to axial thrust self-balance for centrifugal pump impeller. China mechanical engineering, 18(17), 2037-2040.
  • Wilk, A. (2009). Laboratory investigations and theoretical analysis of axial thrust problem in high rotational speed pumps. WSEAS Trans. Fluid Mech., 4(1), 1-13.
  • Yalçın, K. (1998). Hacimsel ve Santrifuj Pompalar. Çağlayan Kitabevi, İstanbul.
  • Yuan, Y., Yuan, S., ve Tang, L. (2019). Numerical investigation on the mechanism of double-volute balancing radial hydraulic force on the centrifugal pump. Processes, 7(10), 689.https://doi.org/10.3390/pr7100689
  • Zhou, L., Shi, W., Li, W., ve Agarwal, R. (2013). Numerical and experimental study of axial force and hydraulic performance in a deep-well centrifugal pump with different impeller rear shroud radius. Journal of Fluids Engineering, 135(10).https://doi.org/10.1115/1.4024894
  • Zhou, R., Yang, J., Liu, H. L., ve Dong, L. (2022). Effect of Volute Geometry on Radial Force Characteristics of Centrifugal Pump during Startup. Journal of Applied Fluid Mechanics, 15(1), 25-36. https://doi.org/10.47176/jafm.15.01.32828
  • Zhu, D., Xiao, R., Yao, Z., Yang, W., ve Liu, W. (2020). Optimization design for reducing the axial force of a vaned mixed-flow pump. Engineering Applications of Computational Fluid Mechanics, 14(1), 882-896.https://doi.org/10.1080/19942060.2020.1749933