İnsansız Hava Araçları ile Yapılan Pestisit Uygulamalarında Farklı Meme Tiplerinin Damla Dağılımına Etkisinin İncelenmesi

Tarımda insansız hava araçları (İHA) son yıllarda yoğun şekilde kullanılmaya başlanmıştır. Ülkemizde ve dünyada, geçtiğimiz on yıl içerisinde insansız hava araçları ile pestisit uygulamaları yaygınlaşmaya başlamıştır. Uzaktan kumanda kontrollü, elektrik motorlu pervaneler ile uçuş yapabilen, üzerinde küçük hacme sahip bir sıvı tankı, pompa ve püskürtme memeleri bulunan İHA' lar ile pestisit uygulamaları gerçekleştirilmektedir. İHA' lar ile yapılan pestisit uygulamalarının tarla trafiğini azaltma, su ve pestisit tasarrufu, zamandan tasarruf gibi avantajları olsada, düşük hacimli uygulama (ULV) yapıldığı ve pervanelerin yarattığı aşağı yönlü hava akımının damla dağılımını etkilemesi gibi sebeplerle, insansız hava araçları ile etkili bir pestisit uygulamasının yapılabilirliği konusunda şüpheler oluşmaktadır. Yapılan çalışmada, insansız hava araçlarında kullanılan farklı püskürtme memelerinin damla dağılım düzgünlüğüne etkisinin araştırılması amaçlanmıştır. Denemelerde DJI Agras MG-1P model, uzaktan kumanda kontrollü, 10 litre sıvı tankına sahip, üzerinde 4 adet püskürtme memesi (Teejet XR11001VS, Teejet XR110015VS, Lechler IDK12001, Lechler IDK120015) bulunan bir oktokopter kullanılmıştır. Bu İHA ile 4 farklı püskürtme memesi ve iki farklı hız ile önceden belirlenmiş bir rota üzerinde 2 metre yükseklikten her meme için 3 tekerrürlü olacak şekilde 8 uçuş gerçekleştirilmiştir. Kullanılan püskürtme memeleri model püskürtme memeleridir. Damla dağılım düzgünlüğünü belirlemek amacıyla, insansız hava aracının uçuş yönüne dik olacak şekilde bir şerit yerleştirilmiş ve bu şerit üzerine 50 cm aralıklarla suya duyarlı kağıtlar yerleştirilmiştir. Her uçuştan sonra suya duyarlı kağıtlar toplanmış, tarayıcıda taranıp DropletScan yazılımıyla hacimsel damla çapları, kaplama yüzdesi, damla yoğunluğu hesaplanmıştır. Buna ek olarak, farklı konumlardaki suya duyarlı kağıtların damla dağılımları karşılaştırılarak, ilaç sürüklenme potansiyeli de belirlenmiştir. Yapılan analizler sonucunda efektif iş genişlikleri hava emişli püskürtme memelerinde 1,5-2,5 m arasında, normal yelpaze hüzmeli memelerde 3 m olarak bulunmuştur. Hız arttıkça sürüklenmenin arttığı, yandan esen rüzgârın ve pervanelerin yarattığı türbülans etkisiyle damla birikimlerinin dronun merkez doğrultusundan saptığı gözlenmiştir. Hava emişli memelerde ağırlaşan damlaların etkisiyle bu durum daha az olmuştur.

Determining the Effect of Different Spraying Nozzles on Droplet Distribution Used for Pesticide Applications with Unmanned Aerial Vehicles

Unmanned aerial vehicles (UAVs) have been used intensively in agriculture in recent years. In Türkiye and the world, pesticide applications with UAVs have become widespread in the last decade. Pesticide applications are carried out by UAVs with remote control, equipped with a small liquid tank, pump and spray nozzles. Although pesticide applications with UAVs have advantages such as reducing field traffic, saving water, pesticides and time, there are doubts about the application efficiency of the pesticides with UAVs due to low volume application (ULV) and the downwash effect created by the propellers. In this study, it is aimed to investigate the effect of different spray nozzles used in UAVs on droplet distribution uniformity. A DJI Agras MG-1P model was used in the experiments. In the experiments, an octocopter, DJI Agras MG-1P model, with remotely controlled, ten-liter liquid tank and four spray nozzles (Teejet XR11001VS, Teejet XR110015VS, Lechler IDK12001, Lechler IDK120015) was used. Eight flights with three replications were carried out from a height of two meters on a predetermined route with four different spray nozzles and two different speeds with this UAV. To determine the uniformity of the droplet distribution, a strip was placed perpendicular to the flight direction of the UAV and water-sensitive papers were placed on this strip at 50 cm intervals. After each flight, the water-sensitive papers were collected and scanned in the scanner and values such as mean droplet diameters, percent coverage, and droplet density were calculated with the DropletScan software. In addition, the spray drift potential was determined by comparing the droplet distributions of the water-sensitive papers at different locations. As a result of the analyses, the effective spray widths were found to be between 1.5-2.5 m for air assisted nozzles and 3 m for standard flat fan nozzles. It has been observed that as the flight speed increases, the spray drift increases and the droplet deposition deviate from the centerline of the drone due to the turbulence created by the crosswind and the propellers. This situation was less due to the effect of the heavy droplets in the air assisted nozzles.

___

  • Anonim (2021a). DJI Agras MG-1P İlaçlama Dronu Teknik Özellikleri. https://www.dji.com/mg-1/info
  • Anonim (2021b). Teejet Püskürtme Memeleri Kataloğu. https://www.teejet.com/ CMSImages/TEEJET/documents/catalogs/cat51a_metric.pdf
  • Anonim (2021c). Lechler Püskürtme Memeleri Kataloğu. https://www.lechler.com/fileadmin/media/kataloge/pdfs/agrar/EN/lechler_agriculture_catalogue_2022_en.pdf
  • ASAE S572.1. 2009. Spray Nozzle Classification by Droplet Spectra. Am. Soc. Agric. Eng., St. Joseph, MI., 4 pp
  • Chen, H., Lan, Y., Fritz, B. K., Hoffmann, W. C., & Liu, S. (2021). Review of agricultural spraying technologies for plant protection using unmanned aerial vehicle (UAV). International Journal of Agricultural and Biological Engineering, 14(1), 38-49.
  • Chen, P., Ouyang, F., Wang, G., Qi, H., Xu, W., Yang, W., ... & Lan, Y. (2021). Droplet distributions in cotton harvest aid applications vary with the interactions among the unmanned aerial vehicle spraying parameters. Industrial Crops and Products, 163, 113324.
  • Çelik, Y. & Bayhan, Y., 2020. A Research on Investigation of the Application Possibilities of Direct Drill Machine with Liquid Fertilizer Assembly for Grain Planting Stubble. International Journal of Innovation Engineering and Science Research, Volume 4 Issue 6 .
  • Çelen, I. H., Önler, E., & Özyurt, H. B. (2020). Drone Technology In Precısıon Agrıculture. Engıneerıng Scıences, 121.
  • Düzgüneş O., Kesici, T., & Gürbüz, F., 1987. İstatistik Metodları-1. Ankara Üniversitesi Ziraat Fakültesi, Yayın No: 861, Ders Kitabı: 229, Ankara.
  • Eliçin, A.K., Pekitkan, F.G., Bayhan, Y., & Sessiz, A., 2018. Effects of Tillage Methods on Weed Density in Corn (Zea Mays L.) Production. International Scientific Journal, Science, Business, Society, 3 (4), 150-152.
  • Hussain, S., Masud Cheema, M. J., Arshad, M., Ahmad, A., Latif, M. A., Ashraf, S., & Ahmad, S. (2019). Spray uniformity testing of unmanned aerial spraying system for precise agro-chemical applications. Pakistan Journal of Agricultural Sciences, 56(4).
  • Martin, D. E., Woldt, W. E., & Latheef, M. A. (2019). Effect of application height and ground speed on spray pattern and droplet spectra from remotely piloted aerial application systems. Drones, 3(4), 83.
  • MH/T Standards. 1040-2011: Determining application rates and distribution patterns from aerial application equipment, Beijing: MHT, 2011. (in Chinese)
  • Sarghini, F., Visacki, V., Sedlar, A., Crimaldi, M., Cristiano, V., & de Vivo, A. (2019, October). First measurements of spray deposition obtained from UAV spray application technique. In 2019 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor) (pp. 58-61). IEEE.
  • Wang, G., Lan, Y., Qi, H., Chen, P., Hewitt, A., & Han, Y. (2019). Field evaluation of an unmanned aerial vehicle (UAV) sprayer: effect of spray volume on deposition and the control of pests and disease in wheat. Pest management science, 75(6), 1546-1555.
  • Wen, S., Han, J., Ning, Z., Lan, Y., Yin, X., Zhang, J., & Ge, Y. (2019). Numerical analysis and validation of spray distributions disturbed by quad-rotor drone wake at different flight speeds. Computers and Electronics in Agriculture, 166, 105036.
  • Yao, W., Guo, S., Yu, F., Du, W., Meng, Y., Wang, J., ... & Lan, Y. (2021). Droplet deposition and spatial drift distribution characteristics of aerial spraying based on the determination of effective swath. International Journal of Precision Agricultural Aviation, 4(1).
  • Yao, W., Lan, Y., Wen, S., Zhang, H., Zhang, Y., Wang, J., & Xie, C. (2019). Evaluation of droplet deposition and effect of variable-rate application by a manned helicopter with AG-NAV Guía system. International Journal of Agricultural and Biological Engineering, 12(1), 172-178.
  • Zhang, P., Zhang, W., Sun, H. T., He, F. G., Fu, H. B., Qi, L. Q., ... & Liu, J. S. (2021). Effects of Spray Parameters on the Effective Spray Width of Single-Rotor Drone in Sugarcane Plant Protection. Sugar Tech, 23(2), 308-315.
  • Zhang, X. Q., Song, X. P., Liang, Y. J., Qin, Z. Q., Zhang, B. Q., Wei, J. J., ... & Wu, J. M. (2020). Effects of spray parameters of drone on the droplet deposition in sugarcane canopy. Sugar Tech, 22(4), 583-588.
  • Zhu, H., Salyani, M., & Fox, R. D. (2011). A portable scanning system for evaluation of spray deposit distribution. Computers and Electronics in Agriculture, 76(1), 38-43.