Döner Tamburlu Kurutucularda Gübre Kurutma Simülasyonu

Hesaplamalı akışkanlar dinamiği simülasyonlarında başlıca sıkıntı, sorunun türüne bağlı olarak uygun eleman ağının oluşturulamamasıdır. Maalesef, her geometriye uygun tek bir ağ modeli bulunmamaktadır. Üstelik eleman ağının kalitesi belli bir seviyenin altında ise problem analizi gerçekleştirilemez. Ticari yazılımların her birinde eleman ağı oluşturmak için farklı yöntemler mevcuttur. Bu nedenle oluşturulan ağ, yazılıma da bağlı olmaktadır. Her ne kadar genel olarak kare elemanlardan oluşan ağ yapıları kalitesinin yüksek olduğu başparmak kuralı olarak bilinmekte ise de, bu elemanlar karmaşık geometrilere uygulanamamaktadır. Oluşturulan eleman ağının uygun olup olmadığının değerlendirilmesinde kalite ölçütleri kullanılmaktadır. Kaliteli elemanlardan oluşan bir modelin oluşturulması, analiz sonuçlarının doğruluğuna ve hesaplama maliyetine doğrudan etki etmektedir. Fakat kalite ölçütlerini göz önünde bulundurarak en uygun mesh metodunu uygulamak problemin geometrisine/parametrelerine bağlı olmaktadır. Bu çalışmada, son yıllarda hem kalitesiyle, hem çözümdeki hızıyla ve hem de karmaşık geometrileri en iyi ayrıştırılabilme özellikleri nedeni ile ön plana çıkan polyhedral eleman ağının, bir döner tamburlu kurutucu simülasyonunda kullanımının değerlendirilmesi amaçlanmıştır. Çalışmada kalite, hız, çözüm maliyeti değerleri amaçlanmıştır. Karmaşık yapılı katı modellerin HAD, Statik vb. analizleri için optimum ağ yapısının oluşturulmasında son yıllarda en gelişmiş ağ yapısına sahip olan polyhedral ağ bu çalışmanın simülasyonlarında kullanılan karmaşık olmayan basit silindirik katı modele uygulanmıştır. Bu çalışmada kullanılan Ansys Fluent ticari programı ile ağ kalite kriterleri ile gerçekleştirilen ağ optimizasyonunda analiz gerçekleştirme hızı, analiz sonuçlarına yakınsama kriteri ve ağ kalitesi bakımından en optimum ağ yapısının karmaşık olmayan basit silindir vb. geometriler için öngörülen sweep ve multizone hekzahedral ağ yapıları olduğu belirlenmiştir. Polyhedral ağ yapısının tetrahedral ağ yapısına göre daha kaliteli olduğu tespit edilmiştir. Sonuç olarak, karmaşık geometriler için geliştirilmiş en gelişmiş ağ yapısı olan polyhedral ağ yapısının bu çalışmada kullanılan karmaşık olmayan basit silindirik modele uygulanması en optimum sonucu vermemiştir. En kaliteli ağ yapısı olan polyhedral ağ yapısının tüm katı modeller için en optimum sonucu vermeyebileceği bu çalışmada görülmüştür. Optimum ağ yapısının, katı modelin geometrik yapısına bağlı olarak değiştiği anlaşılmıştır. Mesh kalite kriterlerine göre katı modelin geometri yapısna uygun ağ yapısının oluşturlması kalite, hız ve çözüm süre maliyetini etkilemektedir. Katı modelin geometrik yapısına uygun optimum ağ yapısı oluşturlması gerekliliği bu çalışmada ortaya çıkmıştır.

Fertilizer Drying Simulation in Rotary Drum Dryers

The main problem in computational fluid dynamics simulations is the inability to create the appropriate element mesh depending on the type of problem. Unfortunately, there is no one-size-fits-all mesh model. Moreover, if the quality of the element network is below a certain level, problem analysis cannot be performed. In each of the commercial software there are different methods for creating the element mesh. For this reason, the network created is also dependent on the software. Although it is generally known as a rule of thumb that the quality of mesh structures consisting of square elements is high, these elements cannot be applied to complex geometries. Quality criteria are used to evaluate whether the created element network is suitable. The creation of a model consisting of quality elements directly affects the accuracy of the analysis results and the calculation cost. However, considering the quality criteria, applying the most appropriate mesh method depends on the geometry/parameters of the problem. In this study, it is aimed to evaluate the use of polyhedral element mesh, which has come to the fore in recent years due to its quality, speed in solution and best separation of complex geometries, in a rotary drum dryer simulation. Quality, speed, solution cost values were aimed in the study. The polyhedral mesh, which has the most advanced mesh structure in recent years, has been applied to the uncomplicated simple cylindrical solid model used in the simulations of this study to create the optimum mesh structure for CFD, Static analyses etc. solid models with complex structure In the mesh optimization performed with the mesh quality criteria with the Ansys Fluent commercial program used in this study, the most optimum mesh structure in terms of analysis performance speed, convergence criteria to the analysis results and mesh quality, It has been determined that sweep and multizone hexahedral mesh structures are predicted for the uncomplicated simple cylinder etc geometries. It has been determined that the polyhedral mesh structure is of higher quality than the tetrahedral mesh structure. As a result, the application of the polyhedral mesh structure, which is the most advanced mesh structure developed for complex geometries, to the uncomplicated simple cylindrical model used in this study did not give the optimum result. It has been seen in this study that the polyhedral mesh structure, which is the best quality mesh structure, may not give the optimum result for all solid models. It is understood that the optimum mesh structure changes depending on the geometric structure of the solid model. According to the mesh quality criteria, the creation of the mesh structure suitable for the geometry structure of the solid model affects the quality, speed and solution time cost. The necessity of creating an optimum mesh structure suitable for the geometric structure of the solid model has emerged in this study.

___

  • Adapa, P. K., Schoenau, G. J., ve Arinze, E. A. (2005). Fractionation of Alfalfa into Leaves and Stems using a Three Pass Rotary Drum Dryer. Biosystems Engineering, 91(4), 455-463. doi:https://doi.org/10.1016/j.biosystemseng.2004.12.003
  • Chen, H., Zhou, X., Feng, Z., ve Cao, S.-J. (2021). Application of polyhedral meshing strategy in indoor environment simulation: Model accuracy and computing time. Indoor and Built Environment, 1420326X211027620. doi:10.1177/1420326X211027620
  • DeSalvo, G. J., ve Swanson, J. A. (1985). ANSYS engineering analysis system user's manual. Houston, Pa: Swanson Analysis Systems.
  • Duchesne, C., Thibault, J., ve Bazin, C. (1996). Modeling of the Solids Transportation within an Industrial Rotary Dryer: A Simple Model. Industrial & Engineering Chemistry Research, 35(7), 2334-2341. doi: 10.1021/ie950625j
  • Huang, Z.-G., Weng, Y.-X., Fu, N., Fu, Z.-Q., Li, D., ve Chen, X. D. (2015). Modeling the Total Residence Time in a Rotary Dryer. International Journal of Food Engineering, 11(3), 405-410. doi: doi:10.1515/ijfe-2014-0333
  • Kaveh, M., Abbaspour-Gilandeh, Y., ve Nowacka, M. (2021). Optimisation of microwave-rotary drying process and quality parameters of terebinth. Biosystems Engineering, 208, 113-130. doi:https://doi.org/10.1016/j.biosystemseng.2021.05.013
  • Korkmaz, C., ve Kacar, İ. (2021). Hesaplamalı Akışkanlar Dinamiği Simülasyonları İçin Optimum Eleman Ağ Yapısının Belirlenmesi Tarımsal Mekanizasyon ve Enerji Üzerine Güncel Araştırmalar. Yenişehir/Ankara: Akademisyen Kitabevi
  • Lisboa, M., Vitorino, D., Delaiba, W., Finzer, J. R., ve Barrozo, M. (2007). A study of particle motion in rotary dryer. Brazilian Journal of Chemical Engineering - BRAZ J CHEM ENG, 24. doi: 10.1590/S0104-66322007000300006
  • Marimuthu, S., ve Chinnathambi, D. (2021). Computational analysis to enhance the compressible flow over an aerofoil surface. Aircraft Engineering and Aerospace Technology, 93(5), 925-934. doi: 10.1108/AEAT-06-2020-0122
  • Murua, I. A. (2019). Energizing Generator Designs. ANSYS Advantage(2), 36-40.
  • Perazzini, H., Freire, F. B., ve Freire, J. T. (2014). Prediction of Residence Time Distribution of Solid Wastes in a Rotary Dryer. Drying Technology, 32(4), 428-436. doi: 10.1080/07373937.2013.835317
  • Renaud, M., Thibault, J., ve Alvarez, P. I. (2001). INFLUENCE OF SOLIDS MOISTURE CONTENT ON THE AVERAGE RESIDENCE TIME IN A ROTARY DRYER. Drying Technology, 19(9), 2131-2150. doi: 10.1081/DRT-100107491
  • Rezaei, H., Lim, C. J., ve Sokhansanj, S. (2022). A computational approach to determine the residence time distribution of biomass particles in rotary drum dryers. Chemical Engineering Science, 247, 116932. doi:https://doi.org/10.1016/j.ces.2021.116932
  • Roberts, J., Wypych, P., Hastie, D., ve Liao, R. (2021). Analysis and validation of a CFD-DPM method for simulating dust suppression sprays. Particulate Science and Technology, 1-12. doi: 10.1080/02726351.2021.1951907
  • Sai, P. S. T. (2013). Drying of Solids in a Rotary Dryer. Drying Technology, 31(2), 213-223. doi:10.1080/07373937.2012.711406
  • Song, Y., Thibault, J., ve Kudra, T. (2003). Dynamic Characteristics of Solids Transportation in Rotary Dryers. Drying Technology, 21(5), 755-773. doi: 10.1081/DRT-120021685
  • Sosnowski, M., Gnatowska, R., Sobczyk, J., ve Wodziak, W. (2018). Numerical modelling of flow field within a packed bed of granular material. Journal of Physics: Conference Series, 1101, 012036. doi: 10.1088/1742-6596/1101/1/012036
  • Sosnowski, M., Krzywanski, J., Grabowska, K., ve Gnatowska, R. (2018). Polyhedral meshing in numerical analysis of conjugate heat transfer. EPJ Web Conf., 180, 02096.
  • Tarhan, S., Telci, İ., Tuncay, M. T., ve Polatci, H. (2010). Product quality and energy consumption when drying peppermint by rotary drum dryer. Industrial Crops and Products, 32(3), 420-427. doi:https://doi.org/10.1016/j.indcrop.2010.06.003 Thomas, M. L., ve Longest, P. W. (2022). Evaluation of the polyhedral mesh style for predicting aerosol deposition in representative models of the conducting airways. Journal of Aerosol Science, 159, 105851. doi:https://doi.org/10.1016/j.jaerosci.2021.105851
  • Wang, W., Cao, Y., ve Okaze, T. (2021). Comparison of hexahedral, tetrahedral and polyhedral cells for reproducing the wind field around an isolated building by LES. Building and Environment, 195, 107717. doi:https://doi.org/10.1016/j.buildenv.2021.107717
  • Xia, Y., Verma, I., Stopford, P., ve Sharkey, P. (2021). GT2021-59100 Dynamic Mesh Adaption For Scale-resolving Reacting Flow Simulations.
  • Zhang, H., Tang, S., Yue, H., Wu, K., Zhu, Y., Liu, C., Liang, B., ve Li, C. (2020). Comparison of Computational Fluid Dynamic Simulation of a Stirred Tank with Polyhedral and Tetrahedral Meshes. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 39(4), 311-319. doi: 10.30492/ijcce.2019.34950
  • Zore, K., Sasanapuri, B., Parkhi, G., ve Varghese, A. (2019). ANSYS MOSAIC POLY-HEXCORE MESH FOR HIGH-LIFT AIRCRAFT CONFIGURATION