Effect of NaCl stress on chlorophyll biosynthesis, proline, lipid peroxidation and antioxidative enzymes in leaves of salt-tolerant and salt-sensitive barley cultivars

Bu araştırmada, tuza toleranslı (Avcı-2002) ve tuza hassas (Tokak 157/37) arpa çeşitlerinin tuza toleransları analiz edilmiştir. Fideler 0, 100, 200 ve 300 mM NaCl içeren hidroponik kültür ortamında büyütülmüştür. Kuru ağırlıktaki azalma Avcı-2002’ye göre Tokak 157/37 çeşidinde daha önemli bulunmuştur. Diğer taraftan, δ­ aminolevülinik asit dehidrataz - (ALAD) aktivitesi ve klorofil içeriği arasında önemli korelasyon bulunmamıştır. Avcı-2002 çeşidinin yapraklarında klorofil ve karotenoid içeriği yalnızca 300 mM NaCl’de önemli düzeyde azalırken, Tokak 157/37 çeşidinin pigment içeriği tüm NaCl konsantrasyonlarında azalmıştır. 300 mM NaCl konsantrasyonunda, prolin içeriğindeki artış Tokak 157/37 çeşidine göre Avcı-2002 çeşidinde önemli düzeyde daha yüksek bulunmuştur. Malondialdehit (MDA) içeriği ile belirlenmiş lipit peroksidasyon seviyesi Avcı-2002’ye göre Tokak 157/37 çeşidinde daha yüksek bulunmuştur. Tuz stresi süperoksit dismutaz (SOD), guaiakol peroksidaz (POD), askorbat peroksidaz (APX) ve katalaz (CAT) aktivitesinde önemli artışa neden olmuştur. Bununla birlikte, Avcı-2002 çeşidinin Tokak 157/37 çeşidinde göre nispeten daha düşük SOD ve CAT aktivitelerine ve daha yüksek POD ve APX aktivitelerine sahip olduğu belirlenmiştir. Sonuç olarak, kuru ağırlık, pigment içeriği, prolin içeriği, lipit peroksidasyonu ile POD ve APX aktivite sonuçları nispeten tuza toleranslı Avcı-2002 ile iyi bir korelasyon göstermiştir.

Tuza-toleranslı ve tuza-hassas arpa çeşitlerinin yapraklarında klorofil biyosentezi, prolin, lipit peroksidasyonu ve antioksidant enzimler üzerine NaCl stresinin etkisi

In this research, the salt tolerance of salt-tolerant (Avcı-2002) and salt-sensitive (Tokak 157/37) barley cultivars were analyzed. The seedlings were grown in a hydroponic culture containing 0, 100, 200 and 300 mM NaCl. The decrease in dry weight was more significant in Tokak 157/37 than in Avcı-2002. On the other hand, no significant correlations were found between the altered δ-aminolevulinic acid dehydratase (ALAD) activity and the chlorophyll content. The chlorophyll and carotenoid contents in leaves of Avcı-2002 decreased significantly at only 300 mM NaCl, whereas the pigment contents of Tokak 157/37 decreased at all NaCl concentrations. The increase in proline content was significantly higher in Avcı-2002 than in Tokak 157/37 at 300 mM NaCl. The lipid peroxidation level measured in terms of malondialdehyde (MDA) content was higher in Tokak 157/37 than in Avcı-2002. Salt stress caused significant increases in superoxide dismutase (SOD), guaiacol peroxidase (POD), ascorbate peroxidase (APX) and catalase (CAT) activity. However, Avcı-2002 had relatively lower SOD and CAT activities and higher POD and APX activities than Tokak 157/37. As a result, dry weight, pigments content, proline content, lipid peroxidation and activities of POD and APX results are in good correlation with supporting Avcı-2002 being relatively salt-tolerant.

___

  • Aebi H (1984). Catalase in vitro. Methods in Enzymology 105: 121-126
  • Ashraf M & Harris P J C (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science 166: 3-16
  • Ashraf M & Ali Q (2008). Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environmental and Experimental Botany 63: 266-273
  • Athar H, Khan A & Ashraf M (2008). Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environmental and Experimental Botany 3: 224-231
  • Bağcı S A, Ekiz H & Yılmaz A (2003). Determination of the salt tolerance of some barley genotypes and the characteristics affecting tolerance. Turkish Journal of Agriculture and Forestry 27: 253-260
  • Bates L S, Waldren R P & Teare I D (1973). Rapid determination of proline for water-stress studies. Plant and Soil 39: 205-207
  • Beauchamp C & Fridovich I (1971). Superoxide dismutase: improved assay and an assay applicable to acrylamide gels. Analytical Biochemistry 44: 276-287
  • Bergmeyer H U (1974). Methods of Enzymatic Analysis. New York, Academic Press
  • Bradford M M (1976). A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein dye binding. Analytical Biochemistry 72: 248-254
  • Dasgan H Y, Aktas H, Abak K & Cakmak I (2002). Determination of screening techniques to salinity tolerance in tomatoes and investigation of genotype responses. Plant Science 163: 695-703
  • Demiral T & Turkan I (2005). Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany 53: 247-257
  • Foyer C H & Noctor G (2003). Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiologia Plantarum 119: 355-364
  • Heath R L & Packer L (1968). Photoperoxidation in isolated chloroplasts. Archives of Biochemistry and Biophysics 125: 189-198
  • Hernández J A & Almansa M S (2002). Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiologia Plantarum 115: 251-257
  • Kholová J, Sairam R K & Meena R C (2010). Osmolytes and metal ions accumulation, oxidative stress and antioxidant enzymes activity as determinants of salinity stress tolerance in maize genotypes. Acta Physiologiae Plantarum 32: 477-486
  • Knox J P & Dodge A O (1985). Singlet oxygen and plants. Phytochemistry 24: 889-896
  • Liang Y, Chen Q, Liu Q, Zhang W & Ding R (2003). Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Journal of Plant Physiology 160: 1157-1164
  • Matysik J A, Bhalu B & Mohanty P (2002). Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Science 82: 525-532
  • Mauzerall D & Granick S (1956). The occurrence and accumulation of δ-aminolevulinic acid and porphobilinogen in urine. Journal of Biological Chemistry 219: 435-446
  • Meloni D A, Oliva M A, Martinez C A & Cambraia J (2003). Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany 49: 69-76
  • Misra N & Gupta A K (2005). Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. Plant Science 169: 331-339
  • Misra N & Gupta A K (2006). Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content in Catharanthus roseus seedlings. Journal of Plant Physiology 163: 11-18
  • Moradi F & Ismail A M (2007). Responses of photosynthesis, chlorophyll fluorescence and ROS- scavenging systems to salt stress during seedling and reproductive stages in rice. Annals of Botany 99: 1161-1173
  • Munns R (2002). Comparative physiology of salt and water stress. Plant Cell and Environment 25: 239-250
  • Munns R & Tester M (2008). Mechanisms of salinity tolerance. Annual Reviews of Plant Biology 59: 651- 681
  • Naito K, Ebato T, Endo Y & Shimizu S (1980). Effect of benzyladenine on δ-aminolevulinic acid synthetic ability and δ-aminolevulinic acid dehydratase: differential responses to benzyladenine according to leaf age. Zeitschrift für Pflanzenphysiologie 96: 95-
  • Nakano Y & Asada K (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Physiologia Plantarum 115: 393-400
  • Neto A D A, Prisco J T, Enéas-Filho J, Abreu C E B & Gomes-Filho E (2006). Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany 56: 87-94
  • Parida A K & Das A B (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety 60: 324-349
  • Ramanjulu S & Sudhakar C (2001). Alliviation of NaCl salinity stress by calcium is partly related to the increased proline accumulation in mulberry (Morus alba L.) callus. Journal of Plant Biology 28: 203-206
  • Royo A & Aragüés R (1999). Salinity-yield response functions of barley genotypes assessed with a triple line source sprinkler system. Plant and Soil 209: 9-20
  • Sairam R K, Srivastava G C, Agarwal S & Meena R C (2005). Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biologia Plantarum 49: 85-91
  • Salin M L (1988). Toxic oxygen species and protective system of the chloroplasts. Physiologia Plantarum 72: 681-689
  • Santos C V (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae 103: 93-99 102
  • Scheneider H A W (1970). Activities and properties of δ-aminolevulinic acid dehydratase in greening tissue cultures of Nicotiana tabacum cv. Samsum. Zeitschrift für Pflanzenphysiologie 62: 133-145
  • Sharma S S & Dietz K J (2006). The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany 57: 711-726
  • Srivastava T P, Gupta S C, Lal P, Muralia P N & Kumar A (1988). Effect of salt stress on physiological and biochemical parameters of wheat. Annals of Arid Zone 27: 197-204
  • Vajpayee P, Tripathi R D, Rai U N, Ali M B & Singh S N (2000). Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere 41: 1075-1082
  • Wellburn A R (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology 144: 307-313
  • Yıldız M & Terzi H (2011). Determination of early seedling stage salt tolerance in some barley cultivars grown in Turkey. Tarım Bilimleri Dergisi-Journal of Agriculture Sciences 17: 1-9
  • Zheng Y, Jia A, Ning T, Xu J, Li Z & Jiang G (2008). Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance. Journal of Plant Physiology 165: 1455-1465
Tarım Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Halit APAYDIN