Analyzing variation of sediment yields in wet and Drought years

Bu çalışma meteorolojik ve hidrolojik kuraklığın küçük bir kırsal havzada, Kuzey Orta Anadolu Bölgesi Tokat İli Uğrak Havzası, sediment verimi üzerine etkilerini incelemek amacıyla yürütülmüştür. Sediment verimi Modifiye Üniversal Toprak Kaybı Eşitliği (MUSLE) denklemi kullanılarak 25 yıllık bir dönem için tahmin edilmiştir. En fazla ve en az sediment verimi sırasıyla 1980 ve 1997 yıllarında hesaplanmıştır. Meteorolojik ve hidrolojik kuraklık, tarihsel yağış ve akış verileri kullanılarak Standardize Edilmiş Yağış İndeksi (SPI) ile tespit edilmiştir. Çalışma süresinin 10 yılı meteorolojik olarak kurak ve 15 yılı yağışlı geçerken, hidrolojik olarak 14 yılı kurak, 11 yılı yağışlı geçmiştir. Meteorolojik olarak kurak ve yağışlı yıllarda sediment verimi sırasıyla 6920.7 ton ve 18068.2 ton olarak hesaplanmıştır. Hidrolojik olarak kurak ve yağışlı yıllarda sediment verimi sırasıyla 7417.8 ton ve 21489.2 ton olarak hesaplanmıştır. Hesaplanan sediment verimi, meteorolojik ve hidrolojik yağışlı ve aynı zamanda meteorolojik ve hidrolojik kurak şartlar altında benzer bulunmuştur. Kuraklık, çalışma alanındaki sediment verimini düşürmüştür.

Yağışlı ve kurak yıllarda sediment veriminin değişim analizi

This study presents meteorological and hydrologic drought effects on sediment yield in a small rural basin, Uğrak Watershed in Tokat Region of North Central Anatolia, Turkey. Sediment yield was estimated by using Modified Universal Soil Loss Equation (MUSLE) model for 25 years period. The maximum and minimum sediment yields were estimated in 1980 and 1997 respectively. Historical precipitation and flow data were analyzed to determine meteorological and hydrological drought by Standardized Precipitation Index (SPI) method. Results showed that there was 10-year drought vs. 15-year wet for meteorological and 14-year drought vs. 11-year wet for hydrological conditions. In the meteorologically drought and wet years, the sediment yields were estimated as 6920.7 tons and 18068.2 tons, respectively. In the hydrological dry and wet years, the sediment yields were estimated as 7417.8 tons and 21489.2 tons, respectively. Sediment yields were found similar in meteorological and hydrological wet and also similar in meteorological and hydrological dry conditions. Drought reduced the sediment yield in the study area.

___

  • Anlı A S, Apaydın H & Öztürk F (2009). Regional frequency analysis of the annual maximum precipitation observed in Trabzon province. Tarım Bilimleri Dergisi 15: (3) 240- 248
  • Asokan K (1981). Runoff and sediment yield from Bino subwatershed of Ramganga catchment. Msc Thesis, Govind Ballabh Pant University (Unpublished), India
  • Banasik K & Walling D E (1996). Predicting sediment graphs for a small agricultural catchment. Nordic Hydrology 27(4): 275-294
  • Blackburn W H, Pierson F B, Hanson C L, Thurow T L & Hanson A L (1992). The spatial and temporal influence of vegetation on surface soil factors in semiarid rangelands. Transactions of the ASAE 35: 479–486
  • Canbazoğlu M K & Gogus M (2004). Sediment yields of basins in the Western Black Sea Region of Turkey. Turkish Journal of Engineering and Environmental Sciences 28: 355-367
  • Canga M R (1995). Toprak ve Su Koruma. Ankara Üniversitesi Ziraat Fakültesi Yayınları: 1386, Ders kitabı: 400, Ankara
  • Dadkah M & Gifford G F (1980). Influence of vegetation, rock cover and trampling on infiltration rates and sediment production. Water Resources Bulletin 16: 979– 986
  • Dodangeh Smaeel, Sattari M T & Seçkin N (2011). Regional frequency analysis of minimum flow by L-Moments method. Tarım Bilimleri Dergisi 17: 43-58
  • Dunbar J A, Allen P M & Bennett S J (2010). Effect of multiyear drought on upland sediment yield and subsequent impacts on flood control reservoir storage. Water Resources Research 46: 1-12
  • Edwards D C & McKee T B (1997). Characteristics of 20th century drought in the United States at multiple time scales. Climatology Report 97-2, Colorado State University, Fort Collins, CO
  • Erskine W D, Mahmoudzadeh A & Myers C (2002). Land use effects on sediment yields and soil loss rates in small basins of Triassic sandstone near Sydney NSW Australia. Catena 49: 271-287
  • ESRI (2009). ArcGIS desktop 9.3 help, Environmental Systems Research Institute (ESRI), http://webhelp.esri.com/arcgisdesktop/9.3/
  • Foster G R, Mc CoolD K, Renard K G & Moldenhauer W C (1991). Conversion of the universal soil loss equation to SI metric units. Journal of Soil and Water Conservation 36: 355-359
  • Giakoumakis S G & Tsakiris G P (1997). Meteorological drought effect on sediment yield. Water Resources Management 11: 365–376
  • Greenwood J A, Landwehr JM, Matalas NC & Wallis J R (1979). Probability weighted moments: Definition and relation to parameters of several distributions expressible in inverse form. Water Resources Research 15: 1049– 1054
  • Gutierrez J & Hernandez I I (1996). Runoff and interril erosion as affected by grass cover in a semi-arid rangeland of northern Mexico. Journal of Arid Environment 34: 287–295
  • Guttman NB (1999). Accepting the standardized precipitation index: A Calculation algorithm. Journal of the American Water Resources Association 35: 311-322
  • Haan, C T (1977). Statistical methods in hydrology. Iowa State Uni. Press, Ames, IA
  • Hosking J R M & Wallis J R (1997). Regional frequency analysis: An approach based on LMoments. Cambridge University Press, Cambridge, U.K
  • Kinell P I A & Risse L M (1998). USLE-M: empirical modeling rainfall erosion through runoff and sediment concentration. Soil Science Society of America Journal 62: 1162-1672
  • Kinell P I A (2001). The USLE-M and modeling erosion within catchments. In: Slott D E Mohtar R H Steinardt (Eds) 10th International Soil Conservation Organization Meeting Purdue University-USDA-ARS National Soil Erosion Research Laboratory, USA
  • Komuscu A U (1999). Using the SPI to analyze spatial and temporal patterns of drought in Turkey. Drought Network News 11: 7–13
  • Korytny LM, Bazhenova OI, Martianova GN & Ilyicheva EA (2003). The influence of climatic change and human activity on erosion processes in sub-arid watersheds in southern East Siberia. Hydrological Processes 17: 3181- 3193
  • Kundzewicz Z W & Parry M L (2002). Europe, in Climate Change 2001: Impacts, Adaptation, and Vulnerability. Edited by J. McCarthy et al., pp. 641–692, Cambridge Univ. Press, Cambridge, U. K
  • Mc Cool D K, Foster G R, Mutchler C K & Meyer L D (1987). Revised slope steepness factor for the universal soil loss equation. Transactions of the AAE 30:(5) 1387- 1396
  • McKee T B, DoeskenN J & Kleist J (1993). The relationship of drought frequency and duration to time scales. Eighth Conference on Applied Climatology, American Meteorological Society, Anaheim, CA
  • McKee T B, Doesken N J & Kleist J (1995). Drought monitoring with multiple time scales. Preprints, 9th Conference on Applied Climatology 15-20 January Dallas Texas American Meteorological Society 233-236
  • Mishra S K, Tyagi J V, Singh V P & Singh R (2006). SCSCN based modelling of sediment yield. Journal of Hydrology 324: 301-322
  • Nearing, M A, Jetten V, Baffaut C, Cerdan O, Couturier A, Hernandez M, Le Bissonnais Y, Nichols M.H, Nunes J.P, Renschler C.S, Souchère V & Van Oost K (2005).
  • Modelling response of soil erosion and runoff to changes in precipitation and cover. Catena 61: 131–134
  • Nicks A D, Williams J R & Gander G A (1994). Estimating erosion with models having different technologies. Proc.25th Annual Conference International Erosion Control Associate Reno NV February 15-18 pp. 51-61
  • Nunes J P, Seixas J & Pacheco N R (2008). Vulnerability of water resources, vegetation productivity and soil erosion to climate change in Mediterranean watersheds. Hydrological Process Journal 22: 3115–3134
  • Oguz I, Balcin M & Senol M (1998). Yozgat yöresinde Üniversal Denklemin K, R, C ve P faktörleri. Toprak ve Su Kaynakları Araştırma Yıllığı 1997. Köy Hizmetleri Genel Müdürlüğü, 106:71-81
  • Oguz I & Balcin M (2003). Tokat- Uğrak havzası yağış ve akış karakteristikleri. Toprak ve Su Kaynakları Araştırma Sonuç Raporları 2003. T.C. Tarım ve Köy İşleri Bakanlığı, Köy Hizmetleri Genel Müdürlüğü, APK Dairesi Başkanlığı, Toprak ve Su Kaynakları Araştırma Şube Müdürlüğü, Yayın No: 124. Ankara
  • Oguz I, Ersahin S & Susam T (2011). Evaluation of Desertification Potential in a Sloping Catchment. Carpathian Journal of Earth and Environmental Sciences 6 (1): 81-88
  • Pandey A, Chowdary V M & Mal B C (2009). Sediment yield modelling of an agricultural watershed using MUSLE, remote sensing and GIS. Paddy and Water Environment 7: 105-113
  • Pruski F F & Nearing M A (2002). Runoff and soilloss responses to changes in precipitation: A computer simulation study. Journal of Soil Water Conservation 57: 7–16
  • Sadeghi S H (2004). Aplication of MUSLE in prediction of sediment yield in Iranian Conditions. ISCO 2004-13th Int. Soil Conservation Org. Conference Brisbane
  • Sadeghi S H R, Mizuyama T & Miyata S (2007). Is MUSLE apt to small steeply reforested watershed? Journal of Forest Research 12: 270-277
  • Sankarasubramanian A & Sirinivasan K (1999). Investigation and comparison of sampling properties of L-Moments and conventional moments. Journal of Hydrology 218: 13-34
  • Schumm S A (1977). The fluvial system. 338 pp JohnWiley, New York
  • Seiler R A, Hayes M & Bressan L (2002). Using the standardized precipitation index for flood risk monitoring. International Journal of Climatology 22: 1365-1376
  • Simons D B & Şentürk F (1992). Sediment transport technology. Water Resources Publications Littleton Col
  • Thorn H C S (1966). Some methods of climatological analysis. WMO Techniques Note 81: 8, 16-22
  • Yurekli K & Kurunc A (2006). Simulating agricultural drought periods based on daily rainfall and crop water consumption. Journal of Arid Environments 67: 629-640
  • Yurekli K & Anlı S A (2008). Analyzing drought based on annual total rainfalls over Tokat province. International Journal of Natural and Engineering Sciences 2: (2) 21-26
  • Yurekli K, Anlı S A, Karahan G & Ors I (2009). Drought trend analysis in Karaman province. 1. Ulusal Kuraklık ve Çölleşme Sempozyumu, 113–119, 16–18 Haziran, Konya, Turkiye
  • Yürekli K & Öztürk F (2000). Tokat-Uğrak havzasında erozyona sebep olan yağmurların incelenmesi. Tarım Bilimleri Dergisi-Journal of Agricultural Sciences 6 (1): 67-72
  • Yurekli K, Ünlükara A & Yıldırım M (2010). Karaman province drought analysis by different approaches. Research Journal of Agricultural Sciences 3: (1) 19-23
  • Yurekli K, SattariM H, Anlı A S HınısM A (2012). Seasonal and annual regional drought prediction by using datamining approach. Atmosfera 25: (1) 85-105
  • Williams J R & Berndt H D (1977). Sediment yield prediction based on watershed hydrology. Transactions of the ASAE 23: 1100-1104
  • Williams J R (1982). Testing the modified universal soil loss equation. In: Proceedings of the Workshop on Estimating Erosion and Sediment Yield on Rangelands. U.S. Department of Agriculture ARM-W-26, 157-161
  • Wood J C, Wood M K & Tromble J M (1987). Important factors influencing water infiltration and sediment production on arid lands in New Mexico. Journal of Arid Environment 12: 111–118