Amitraz’a dirençli Tetranychus urticae koch (Acari: Tetranychidae)’de çoklu direnç, kalıtım, sinerjizm ve detoksifikasyon mekanizmaları

Antalya ilinde fasulye serasından Mayıs 2003’de toplanmış olan Tetranychus urticae Koch’nin BEŞ popülasyonuna amitraz ilacı ilaçlama kulesi–petri kabı yöntemi ile uygulanarak LC değerleri belirlenmiştir. BEŞ popülasyonu amitraz ile her seleksiyon popülasyonu için belirlenen $LC_{60}$ değerleriyle 15 kez seleksiyon yapılmıştır. Elde edilen dirençli popülasyon AMT 15 olarak isimlendirilmiştir. $LC_{50}$ değerlerine göre, 15 seleksiyon sonrasında bu popülasyonun hassas (GSS) popülasyona göre direnç oranı 32.02 kat olarak bulunmuştur. Dirençli AMT 15 popülasyonuna 3 farklı sinerjist, piperonyl butoxide (PBO), triphenyl phosphate (TPP) veya S-benzyl-O,O-diisopropyl phosphorothioate (IBP) + amitraz uygulanmıştır. Amitraz ile en yüksek sinerjistik etkiyi PBO göstermiştir. Diğerlerinin sinerjistik etkisi sınırlı kalmıştır. AMT 15 popülasyonunun diğer bazı ilaçlara çoklu direnç geliştirip geliştirmediği de incelenmiştir. AMT popülasyonunda en yüksek çoklu direnç oranı abamectin (8.38 kat) ve propargite (6.37 kat)’e karşı belirlenmiştir. AMT 15 popülasyonunda yalnızca bifenthrin’e karşı hassasiyet belirlenmiştir. Resiprokal çaprazlama çalışmalarında AMT 15 popülasyonun direnç kalıtımının eksik dominant karakterli olduğu belirlenmiştir. Mikroplate reader ile yapılan kinetik okumalarda AMT 15 popülasyonun da selekte edildikleri BEŞ popülasyonuna göre esteraz (2.19 kat), glutation S–transferase (GST) (1.07 kat) ve sitokrom P450 monooksigenaz (P450) (29.24 kat) enzim aktivitelerinde önemli miktarda artış belirlenmiştir.

Mechanisms of multiple resistance, inheritance, synergism and detoxification in Tetranychus urticae koch (Acari: Tetranychidae) resistant to amitraz

The LC values of Tetranychus urticae Koch BEŞ populations collected from Antalya province in bean greenhouse on May 2003 were determined using by spray tower – petri dish method. The BEŞ population was selected 15 times with amitraz by $LC_{60}$ values determined for each selected population. The resistant population was named as AMT 15. The resistance rate of this population after 15 selections was found 32.02 fold compared to the susceptible (GSS) population according to their $LC_{50}$ values. Different synergists, piperonyl butoxide (PBO), triphenyl phosphate (TPP) and S-benzyl-O,O-diisopropyl phosphorothioate (IBP) + amitraz were applied to the AMT 15 resistant populations. PBO presented the highest synergistic effect with amitraz in AMT 15 population. The synergistic effects of the other synergists remained limited. Whether multi-resistance developed against some pesticides in the resistant AMT 15 population investigated. The highest multi-resistance rate in AMT population was found against abamectin (8.34 fold) and propargite (6.37 fold). The only susceptibility in AMT 15 population was determined to bifentrin. The reciprocal crossing investigations revealed the resistance inheritance as incompletely dominant. The kinetic readings with microplate reader pointed significant increases in esterase (2.19 fold), gluthation – S – transferase (GST) (1.07 fold) and cytochrome P450 monooxygenase (P450) (29.24 fold), enzyme activities in AMT 15 population compared to the parental populations.

___

  • Ay, R. 2005. Determination of susceptibility and resistance of some greenhouse populations of Tetranychus urticae Koch to chlorpyrifos (dursban 4) by the petri dish-potter tower method. Journal of Pest Science 78: 139-143.
  • Ay, R., E. Sökeli, İ. Karaca and M. O. Gürkan. 2005. Response to some acaricides of the two-spotted spider mite (Tetrychus urticae Koch) from protected vegetables in ısparta. Turkish Journal of Agriculture and Forestry 29: 165-171.
  • Ay, R. 2006. Antalya ili örtüaltı sebze üretim alanlarında zararlı olan Tetranychus urticae Koch populasyonlarının bazı akarisitlere karşı tepkileri. Tarım Bilimleri Dergisi, 12 (3): 301-306.
  • Anonymous. 2002. Bitki Koruma Ürünleri. TİSİT.
  • Bradford, M. M. 1976. A rapid and sensitiv method for the quantitation of microgramm quantities of protein utilizing the principle of protein – dye b inding. Analytical Biochemistry 72: 248-254.
  • Fergusson-Kolmes, L. A., J., G. Scott and T. J. Dennehy. 1991. Dicofol resistance in Tetranychus urticae (Acari: Tetranychidae): cross-resistance and pharmacokinetics. Journal of Economic Entomology 84: 41-48.
  • Inoue, K. 1984. Resistance to amitraz in the citrus red mite, Panonychus citri (McGregor) in relation to population genetics. Japanese Journal of Applied Entomology and Zoology 28: 260-268.
  • Jonsson N. N. and M. Hope. 2007. Progress in the epidemiology and diagnosis of amitraz resistance in the cattle tick Boophilus microplus. Veterinary Parasitology 146: 193-198.
  • Kabir, K.H. and R. B. Chapman. (1997) Operational and biological factors influencing responses of spider mites (Acari: Tetranychidae) to propargite by using the petri dish - Potter tower method. Journal of Economic Entomology 90:272-277.
  • Kang, C.Y., G. Wu and T. Miyata. 2006. Synergism of enzyme inhibitors and mechanisms ofinsecticide resistance in Bemisia tabaci. (Gennadius.) (Hom., Aleyrodidae). Journal of Applied Entomology 130: 377 – 385.
  • Kim, Y. J., S. H. Lee, S. W. Lee and Y. J. Ahn. 2004. Fenpyroximate resistance in Tetranychus urticae (Acari: Tetranychidae): Cross-resistance and biochemical resistance mechanisms. Pest Management Science 60: 1001-1006.
  • Konanz, S. and R. Nauen. 2004. Purification and partial characetrization of a glutathione S-transferase from the two-spotted spider mite, Tetranychus urticae. Pesticide Biochemistry and Physiology 79: 49-57.
  • Kumral, N. A. and B. Kovancı. 2007. Susceptibility of female populations of Panonychus ulmi (Koch) (Acari: Tetranychidae) to some acaricides in apple orchards. Journal of Pest Science 80: 131-137.
  • LeOra Software, 1994. POLO-PC: A User’ s Guide to Probit or Logit Analysis LeOra Software, 28 p., Berkeley, CA.
  • Li, A. Y., Davey, R. B., Miller, R. J. and J. E. George. 2004. Detection and characterization of amitraz resistance in the southern cattle tick, Boophilus microplus (Acari: Ixodidae). Journal of Medical Entomology 41(2):193-200.
  • Li, A. Y., Davey, R. B., Miller, R. J. and J. E. George. 2005. Mode of inheritance of amitraz resistance in a Brazilian strain of the southern cattle tick, Boophilus microplus (Acari: Ixodidae). Experimental and Applied Acarology 37: 183–198.
  • Öncüer, C. 2004. Tarımsal Zararlılarla Savaş Yöntemleri ve İlaçları. Adnan Menderes Üniversitesi Yayınları, No: 19, 424s. Aydın.
  • Rose, R., L. Barbhaiya, R. Roe, G. Rock and E. Hodgson. 1995. Cytochrome P-450-associated insecticide resistance and the development of biochemical diagnostic assays in Heliothis virescens. Pestic. Biochem. Physiol. 51: 178–191.
  • SAS, 1999. Statistical Analysis Systems User’ s Guide (8th ed). SAS Institute INC., Raleigh, North Carolina, USA.
  • Sato, M. E., T. Miyata, M-D. Silva, A. Raga and M. F. S. Filho. 2004. Selection for fenpyroximate resistance and susceptibility, inheritance, cross-resistance and stability of fenpyroximate resistance in Tetranychus urticae Koch (Acari: Tetranychidae). Appl. Entomol. Zool. 390 293-302.
  • Stumpf, N. and R. Nauen. 2002. Biochemical markers linked to abamaectin resistance in Tetranychus urticae (Acari: Tetranychidae). Pesticide Biochemistry and Physiology 72: 111-121.
  • Van Leeuwen, T., V. Stillatus and L. Tirry. 2004. Genetic analysis and cross-resistance spectrum of a laboratory-selected chlorfenapyr resistant strain of two-spotted spider mite (Acari: Tetranychidae). Experimental & Applied Acarology, 32: 249-261.
  • Van Leeuwen, T., S. Van Pottelberge and L. Tirry. 2005. Comparative Acaricide Susceptibility and Detoxifying Enzyme Activities in Field-Collected Resistant and Susceptible Strains of Tetranychus urticae. Pest Management Science 61: 499-507.
  • Van Leeuwen, T., L. Tirry and R. Nauen. 2006. Complete maternal inheritance of bifenzate resistance in Tetranychus urticae Koch (Acari: Tetranychidae) and its implications in mode of action considerations. Insect Biochemistry and Molecular Biology 36: 869-877.
  • Van Leeuwen, T. and L. Tirry. 2007. Esterase-mediated bifenthrin resistance in a multiresistant strain of the two-spotted spider mite, Tetranychus urticae. Pest Mnagement Science 63:150-156.
  • Van Pottelberge, S., T. Van Leeuwen, J. Khajehali and L. Tirry. 2009. Genetic and biochemical analysis of a laboratory-selected spirodiclofen-resistant strain of Tetranychus urticae Koch (Acari: Tetranychidae). Pest Management Science 65: 358-366.
  • Wang, L. and Y. Wu. 2007. Cross-resistance and biochemical mechanisms of abamectin resitance in the B-type Bemisia tabaci. Journal of Applied Entomology 131: 98-103.
  • Vontas, J. G., A. A. Enayati, G. J. Small and J. Hemingway. 2000. A Simple biochemical assay for glutathione S-transferase activity and Its possible field application for screening glutathione S-transferase- based insecticide resistance. Pesticide Biochemistry and Physiology 68: 184-192.
  • Wheelock, C., E., G. Shan and J. Ottea. 2005. Overview of carboxylesterases and their role in the metabolism of insecticides. Journal of Pest Science 30: 75-3.
  • Yang, X., L. L. Buschman, K. Y. Zhu and D. C. Margolies. 2002. Susceptibility and detoxifying enzyme activity in two spider mite species (Acari : Tetranychidae) after selection with three insecticides. Journal of Economic Entomology 95 (2): 399 - 406.
  • Young, S. J., R. V. Gunning and D. G. Moores. 2005. The effect of piperonyl butoxide on pyrethroid – resistance – associated esterases in Helicoverpa armigera (Hübner) (Lepidoptera : Noctuidae) Pest Management Science. 61:397 – 401.