Ağır Ürünlerin Hasadında Kullanılan Bir 5DOF Eklemli Robot Kolun Kinematik Analizi ve Simülasyonu

Robotlar etkinliği artırmak ve çiftçilerin yükünü hafifletmekte önemli bir rol oynayabilir. Tarımsal amaçlı robot dizaynlarındaki zorluklara rağmen, robotlar çeşitli görevleri yerine getirmede ve kendilerini duruma göre değiştirmede belli koşullara göre kabiliyetlidirler. Tarım alanındaki modern problemlerin ifade edilmesinde, bir tarımsal robot anahtar teknolojilerden biridir. Tarımsal robotlar halen gelişme aşamasında olmalarına rağmen, robotlar parlak bir geleceğe sahiptirler. Bu yayın kabak ve lahana gibi ağır ürünlerin hasadına bir çözüm olabilecek yeni bir 5DOF eklemli robot kol dizaynını sunmaktadır. Düzeneğin ana dizayn süreci altı aşamalı Shigley dizayn prosesi kullanılarak tasarlanmıştır. Tüm parçaların dizaynı, birleştirilmesi ve analizi JIS standartları ile uyumlu Solidworks 2014 kullanarak gerçekleştirilmiştir. Dinamik yapıda olan sistem parçaları standart mekanik formüllerin kullanılması ile manuel olarak analiz edilmişlerdir. İleri ve geri kinematiklerin hesaplanmasında Denavit-Hartenberg yöntemi kullanılmıştır. Tork azalma problemini ortadan kaldırmak için parçalar farklı materyallerle ve kütle merkezine göre dizayn edilmiştir ve beraber karşılaştırılmıştır. Sonuçlar göstermiştir ki 1, 2, 3, 4 ve 5 numaralı eklemlerde toplam tork, 15 ~ 60 rpm rasyonel hız aralığı ile sırasıyla 6.15, 257.35, 103.4, 20.2 ve 0.1 olmuştur. Bağlantı materyalindeki ve servo motor lokasyonundaki değişiklikler her bir eklem için olan toplam gerekli torku % 29.7~ % 47.ve % 29.7% ~ % 68.9 aralıklarında iyileştirmiştir. Kol tarafından taranan maksimum mesafe J2 den 1421 mm ve eklem noktasından da 2026 mm olmuştur. Ters kinematik eşitliği algoritmasından alınan geri beslemeye göre robot kolunun temel operasyonları optimum bir performans göstermiştir.

Kinematics Analysis and Simulation of A 5DOF Articulated Robotic Arm Applied to Heavy Products Harvesting

Robotics can play a significant role to increase efficiency and lighten the farmer’s load. Despite challenges in the agricultural robotic designs, robots are capable of performing various tasks and changing themselves accordingly, based on specific conditions. To address modern problems in the agricultural field, an agricultural robot is one of the key technologies. Although agricultural robotic is still in the development stage, robots have a bright future ahead. This paper proposes a new 5DOF articulated robotic arm design that would become a solution for heavy crop harvestings like pumpkin and cabbage. After the development stage, this robotic arm will be mounted on a robot tractor for real experimentation. The main design process of this robotic arm was conceived using 6 stages of Shigley design process. All components were designed, assembled and analyzed by using Solidworks 2014 in compliance with Japanese Industrial Standards (JIS) standards. The parts of the system that had dynamic nature were analyzed manually using standard mechanical formulas. Calculations of the workspace required joint torque, and coordination of mass center position was done by using standard machine design methods. Denavit-Hartenberg method was used to calculate forward and inverse kinematics. To resolve the torque reduction, components were designed using different materials and mass centers and comparing their performance. Results showed that total torque in Joints number 1, 2, 3, 4 and 5 were 6.15, 257.35, 103.4, 20.2 and 0.1 respectively with a rotational speed range of 15 ~ 60 rpm. Changes in the linkage material and servo motor location improved 29.7% ~ 47.7% and 29.7% ~ 68.9% of the total required torque for each joint. The maximum distance covered by the arm was 1421 mm from the and 2026 mm from the attachment point. According to the feedback received from a inverse kinematics equation algorithm, the fundamental operation of the robot arm had an optimal performance.

___

  • Zion B, Mann M, Levin D, Shilo A, Rubinstein D & Shmulevich I (2014). Harvest-order planning for a multiarm robotic harvester. Computers and Electronics in Agriculture 103: 75-81
  • Yahya S, Moghavvemi M & Mohamed H A F (2011). Geometrical approach of planar hyper-redundant manipulators: Inverse kinematics, path planning and workspace. Simulation Modelling Practice and Theory 19(1): 406-422
  • Wang S-C, Hikita H, Kubo H, Zhao Y-S, Huang Z & Ifukube T (2003). Kinematics and dynamics of a 6 degree-of-freedom fully parallel manipulator with elastic joints. Mechanism and Machine Theory 38(5): 439-461
  • USDA (2015). Farm Demographics - U.S. Farmers by Gender, Age, Race, Ethnicity, and More, United States Department of Agricultur (onile article), https://www.agcensus.usda.gov/Publications/2012/ Online_Resources/Highlights/Farm_Demographics
  • Tanner H G, Kyriakopoulos K J & Krikelis N I (2001). Advanced agricultural robots: kinematics and dynamics of multiple mobile manipulators handling non-rigid material. Computers and Electronics in Agriculture 31(1): 91-105
  • Tanigaki K, Fujiura T, Akase A & Imagawa J (2008). Cherry-harvesting robot. Computers and Electronics in Agriculture 63(1): 65-72
  • Serdar K & Zafer B (2006). Industrial robotics theory modelling and control. Pages 964 in C. Sam, ed Siciliano B & Khatib O (2008). Handbook of Robotics, Springer publisher, ISBN 978-3-540-23957-4
  • Richard B & Keith N (2006). Shigley’s Mechanical Engineering Design. McGraw-Hill Publishing Company Satoru G (2011). ROBOT ARMS. InTech publisher, ISBN 978-953-307-160-2
  • Raghavan M & Roth B (1990). Inverse kinematics of the general 6R manipulator and related linkages. Transactions of the ASME, Journal of Mechanical Design 115: 228-235
  • MAFF (2016). TPP or no, aging farm sector needs true reform. [Online] Available: http://www.maff.go.jp/e/ index.html.
  • Lee H-Y & Liang C-G (1988). Displacement analysis of the general spatial 7-link 7R mechanism. Mechanism and Machine Theory 23(3): 219-226
  • Kondo N, Monta M & Fujiura T (1996). Fruit harvesting robots in Japan. Advances in Space Research 18(1-2): 181-184
  • Karlik B & Aydin S (2000). An improved approach to the solution of inverse kinematics problems for robot manipulators. Engineering Applications of Artificial Intelligence 13(2): 159-164
  • Hayashi S, Shigematsu K, Yamamoto S, Kobayashi K, Kohno Y, Kamata J & Kurita M (2010). Evaluation of a strawberry-harvesting robot in a field test. Biosystems Engineering 105(2): 160-171
  • Funda J, Taylor R H & Paul R P (1990). On homogeneous transforms, quaternions, and computational efficiency. IEEE Transactions on Robotics and Automation 6: 382-388
  • Ghazvini M (1993). Reducing the inverse kinematics of manipulators to the solution of a generalized eigenproblem. In: J Angeles, G Hommel, Kovács (Eds), Computational Kinematics, Solid Mechanics and its Applications 28: 15-26
  • Denavit J & Hartenberg R S (1955). A kinematic notation for lower-pair mechanisms based on matrices. Journal of Applied Mechanics 1: 215-221
  • De-An Z, Jidong L, Wei J, Ying Z & Yu C (2011). Design and control of an apple harvesting robot. Biosystems Engineering 110(2): 112-122
  • Craig J J (1989). Introduction to Robotics Mechanics and Control. USA:Addision-Wesley Publishing Company
  • Cassinis R & Tampalini F (2007). AMIRoLoS an active marker internet-based robot localization system. Robotics and Autonomous Systems 55(4): 306-315
  • Barawid Jr O C, Mizushima A, Ishii K & Noguchi N (2007). Development of an Autonomous Navigation System using a Two-dimensional Laser Scanner in an Orchard Application. Biosystems Engineering 96(2): 139-149
  • Balkan T, Özgören M K, Sahir Arıkan M A & Baykurt H M (2000). A method of inverse kinematics solution including singular and multiple configurations for a class of robotic manipulators. Mechanism and Machine Theory 35(9): 1221-1237
  • Angeles J (1997). Fundamentals of Robotic Mechanical Systems. Theory, Methods and Algorithms. Springer, New York