Microwave Drying of Quince Slices

Bu çalışmada, ayva dilimlerinin nem oranı, kuruma hızı ile mikrodalga kuruma karakteristikleri rapor edilmiştir. Ayva dilimleri fan destekli mikrodalga kurutucuda kurutulmuşlardır. Ayva dilimlerinin kuruma süresi ve kurutma hızı üzerinde mikrodalga kurutmanın (180, 360, 540, 720 and 900W) etkileri araştırılmıştır. Ayva dilimleri 3,75 g su/g kuru madde ilk nem içeriğinden 0,12 g su/g kuru madde son nem içeriğine kadar kurutulmuşlardır. Mikrodalga kurutma sistemi içerisinde, 5 mm kalınlıkta dilimlenen ayva dilimleri 180, 360, 540, 720 ve 900 W mikrodalga güç seviyelerinde kurutulmuştur. Mikrodalga kurutma denemeleri süresince, dilimler tartılmış ve her 1 dakikada elle ölçümler kaydedilmiştir. Kurutma verileri, 10 farklı matematiksel modellere (Newton, Page, Henderson ve Pabis, Logaritmik, Midilli-Kucuk, Wang ve Singh, iki terimli, Verma, iki terimli üssel, difüzyon yaklaşımı) uygulanmıştır. Tüm kuruma modelleri içerisinde, en uygun kuruma modeli, Midilli-Kucuk model eşitliği bulunmuştur.

Ayva Dilimlerinin Mikrodalga ile Kurutulması

In this research, microwave drying characteristics on moisture ratio, drying rate of quince slices were reported. Quince slices were dehydrated in a fan assisted microwave oven dryer. The effects of microwave drying (180, 360, 540, 720 and 900W) on drying time, drying rate of quince slices have been investigated. Quince slices were dried from 3.75 g water/g dry matter initial moisture content to 0.12 g water/g dry matter final moisture content. In the microwave drying system, quinces sliced into 5 mm thickness were dried at 180, 360, 540, 720 and 900W microwave drying powers. During microwave drying experiments, slices were weighted and data recorded manually per 1 minute. The drying data were applied to nine different mathematical models, namely, Newton, Page, Henderson and Pabis, Logarithmic, Midilli-Kucuk, Wang and Singh, Two Term, Verma, Two Term Exponential, Diffusion Approach Equation Models. It was found that the Midilli-Kucuk model described the drying curve satisfactorily in all drying methods.

___

  • Agrawal, Y.C., Singh, R.P. 1977. Thin layer drying studies on short grain rough rice. ASAE Paper No 3531. St. Joseph MI:ASAE.
  • Akpınar, E.K., Biçer, Y., Çetinkaya, F. 2006. Modeling of thin layer drying of parsley leaves in a convective dryer and under open sun. Journal of Food Engineering,75, 308-315.
  • Akpınar, E.K. 2006. Determination of suitable thin layer drying curve model for some vegetables and fruits. Journal of Food Engineering,73, 74- 85.
  • Alibaş, İ. 2007. Energy Consumption and colour characteristics of nettle leaves during microwave, vacuum and convective drying. Biosystem Engineering, 96 (4),495-502.
  • Arslan, D., Ozcan, M.M. 2008. Evaluation of drying methods with respect to drying kinetics, mineral content and colour characteristics of rosemary leaves. Energy conversion and Management, 49, 1258-1264.
  • Ayensu, A. 1997. Dehydration of food crops using a solar dryer with convective heat flow. Solar Energy, 59 (4-6), 121-126.
  • Babalis, S.T., Papanicolaou, E., Kyriakis, N., Belessiotis, V.G. 2006. Evaluation of thin-layer drying models for describing drying kinetics of figs (Ficus carica), Journal of Food Engineering, 75, 205-214.
  • Doymaz, İ. 2005a. Drying characteristics and kinetics of okra. Journal of Food Engineering, 69, 275-279.
  • Doymaz, İ. 2005b. Sun drying of figs: an experimental study. Journal of Food Engineering, 71, 403-407.
  • Doymaz İ. 2006. Thin-layer drying behaviour of mint leaves. Journal of Food Engineering, 74, 370-375.
  • Ertekin, C., Yaldız, O. 2004. Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering, 63, 349-359.
  • Karaaslan, S.N., Tunçer, İ.K. 2008. Development of a drying model for combined microwave-fan assisted convection drying of spinach. Biosystem Engineering, 100, 44-52.
  • Maskan M. 2001. Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48, 177-182.
  • Noshad, M., M. Mohebbi, F. Shahidi and S. A. Mortazavi (2012). "MultiObjective Optimization of OsmoticUltrasonic Pretreatments and Hot-Air Drying of Quince Using Response Surface Methodology." Food and Bioprocess Technology 5(6): 2098- 2110.
  • Panchariya, P.C., Popovic, D.,Sharma, A.L. 2002. Thin-layer modelling of black tea drying process. Journal of Food Engineering, 52, 349-357
  • Prakash, S., Jha, S.K., Datta, N. 2004. Performance evaluation of blanched carrots dried by three different driers. Journal of Food Engineering, 62, 305-313
  • Sacilik, K., Elicin, A.K. 2006. The thin layer drying characteristics of organic apple slices. Journal of Food Engineering, 73, 281-289.
  • Sharaf-Elden, Y.I., Blaisdell, J.L., Hamdy, M.Y. 1980. A model for ear corn drying. Transactions of the ASAE, 5, 1261-1265.
  • Soysal Y.2004.Microwave drying Characteristics of Parsley. Biosystems Engineering,89,167-173.
  • Soysal Y., Öztekin S., Eren Ö. 2006. Microwave drying of parsley: modelling, kinetics, and energy aspects. Biosystems Engineering 93(4): 403-13.
  • Toğrul, İ.T., Pehlivan, D. 2003. Modeling of drying kinetics of single apricot. Journal of Food Engineering. 58, 23- 32.
  • Wang, C.Y., Singh, R.P. 1978. A single layer drying equation for rough rice. ASAE Paper No:78-3001,ASAE, St.Joseph,MI.
  • Wang, J., Xi, Y.S. 2005. Drying characteristics and drying quality of carrot using a two- stage microwave process. Journal of Food Engineering, 68, 505-511.
  • Verma, L.R., Bucklin, R.A., Endan, J.B., Wratten, F.T. 1985. Effects of drying air parameters on rice drying models. Transactions of the ASAE, 28, 296- 301.
  • Yaldız, O., Ertekin, C., Uzun, H.I. 2001. Mathematical modelling of thin layer solar drying of Sultana grapes. Solar Energy, 26, 457-465.