Vitamin B Kompleksinin Fotodinamik Terapiyle Kolon Kanserine Etkisi

Amaç: Kolon kanserleri, hastanın yaşam kalitesini derinden etkileyen ve çeşitli komplikasyonlarla ilişkili kronik ölümcül bir hastalıktır. Vitamin B kompleksi, gıda takviyesi olarak alındığında olumlu anti-inflamatuar etkiler göstermektedir. Bu çalışma, fotodinamik terapiyle lipozomlu vitamin B kompleksinin kolon kanserlerinde (HCT-116 ve HT-29 hücre hattı) anti-kanser etkisini araştırmayı amaçlamıştır. Materyal- Metot: Çalışmanın birinci basamağını oluşturan Vitamin B kompleksi lipozom ile kapsüle edildi. Lipozomlu vitamin B kompleksi Zetasizer cihazı ile karakterize edildi. Lipozomlu vitamin B kompleksi MTT (3-4,5-dimetil-tiyazolil-2,5-difeniltetrazolyum bromür) testi ile HCT-116 ve HT-29 hücre hattında % canlılık oranlarına bakılmıştır. Aynı hücre hatlarında vitamin B kompleksinin fotodinamik terapi etkisiyle hangi ölüm yolaklarını seçtiğini göstermek için de akış sitometrisi kullanılarak analiz edilmiştir. Bulgular: Lipozomlu vitamin B kompleksinin boyutları 100 nm ile 200 nm aralığında değiştiği belirlendi. Lipozomlu vitamin B kompleksi (fotosensitizer) 7,5 J/cm2 ışık dozunda 0,25 mg/ mL'de karanlık deneyinde HCT-116 hücre canlılık yüzdesi %75 iken ışık deneyi sonrası bu oran %47’lere düşmüştür (****p<0.001). 0,5 mg/mL vitamin B kompleksi çözeltisi için yapılan karanlık deneyinde HT-29 hücre canlılık yüzdesi %70 iken ışık deneyi sonrası bu oran %35’lere düşmüştür (****p<0.001). Arzu edilen fotodinamik etkinlik bu sonuçlara daha yakındır. Hücre ölüm yolakları belirleme deneyinde lipozomlanmış vitamin B kompleksinin konsantrasyonu 1mg/mL olarak HCT-116 ve HT-29 hücrelerine uygulanmıştır. HCT-116 hücre hattında %40 oranında apoptoz görülürken HT-29 hücre hattında %60 oranında apoptoz görüldü. Sonuç: Pazarlanan ilaçları yeniden konumlandırmak, yeni antitümör ilaçları keşfetmek için yeni bir yaklaşım olarak ortaya çıkmıştır. Pazarlanan ilaçlar için yeni kullanım alanlarının geliştirilmesi, yeni anti-tümör ilaçları geliştirmenin etkili ve hızlı yolu olduğu kanıtlanmıştır. Verilerimiz in-vitro olarak bazı kolon kanser türlerinde vitamin B kompleksinin fotodinamik terapiyle kullanımının ümit vaat ettiğini savunmaktadır.

Effect of Vitamin B Complex on Colon Cancer by Photodynamic Therapy

Objective: Colon cancer is a chronic fatal disease that severely affects the quality of life of patients and is associated with various complications. Vitamin B complex shows positive anti-inflammatory effects when taken as a food supplement. The aim of this study was to investigate the anti-cancer effect of vitamin B complex with liposomes in colon cancers (HCT-116 and HT-29 cell lines) using photodynamic therapy. Material-Method: Vitamin B complex, which is the first step of the study, was encapsulated with liposome. Vitamin B complex with liposome was characterized by Zetasizer device. The MTT (3-4,5-dimethyl-thiazolyl-2,5-diphenyltetrazolium bromide) assay was used to determine the % survival rates in HCT-116 and HT-29 cell lines. The same cell lines were also analyzed by flow cytometry to show which death pathways were selected by the vitamin B complex with the effect of photodynamic therapy. Results: It was found that the dimensions of the vitamin B complex with liposomes varied between 100 nm and 200 nm. Liposomal vitamin B complex (photosensitizer) at 7.5 J/cm2 light dose at 0.25 mg/mL in the dark experiment, while the percentage of HCT-116 cell viability was 75%, this rate decreased to 47% after the light experiment (****p <0.001). While the percentage of HT-29 cell viability was 70% in the dark test for 0.5 mg/mL vitamin B complex solution, this rate decreased to 35% after the light test (****p<0.001). The desired photodynamic efficiency is closer to these results. In the cell death pathway assay, the concentration of liposomal vitamin B complex was applied to HCT-116 and HT-29 cells at 1 mg/mL. While 40% apoptosis was observed in the HCT-116 cell line, 60% apoptosis was observed in the HT-29 cell line. Conclusion: Repositioning of marketed drugs has emerged as a new approach to the discovery of new anti-tumor drugs. The development of new uses for marketed drugs has proven to be an efficient and rapid way to develop new anti-tumor drugs. Our data suggest that the in vitro use of vitamin B complex with photodynamic therapy is promising in some types of colorectal cancer.

___

  • Siegel, R.L., Miller, K.D., and Jemal, A. 2017. Cancer statistics 2017. CA Cancer J. Clin. 67 (1), 7–30.
  • Yoonjeong, C., Erez, T., Reynolds, I. J., Kumar, D., Jermaine, R., Gregory, K., et al. (2018). Drug repurposing from the perspective of pharmaceutical companies. Br. J. Pharmacol. 175 (2), 168–180.
  • Reddy, A.S., and Zhang, S. 2013. Polypharmacology: drug discovery for the future. Expert Rev. Clin. Pharmacol. 6 (1), 41–47.
  • Lopez-Lazaro, M. What is the main cause of cancer? J. Cancer Stud. Ther. 2016, 1, 1–2.
  • Rebecca, L.S.; Kimberly, D.M.; Ahmedin, J. Cancer statistics. CA Cancer J. Clin. 2019, 69, 7–34.
  • Deng, X., Shao, Z., Zhao, Y. Solutions to the drawbacks of photothermal and photodynamic cancer therapy. Adv Sci. 2021;8(3):2002504.
  • Suzuki, T., Tanaka, M., Sasaki, M., Ichikawa, H., Nishie, H., Kataoka, H. Vascularshutdown by photodynamic therapy using talaporfn sodium. Cancers.2020.
  • Russell-Jones, G., McTavish, K., McEwan, J., Rice, J., Nowotnik, D. Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumours. J. Inorg. Biochem. 2004, 98, 1625–1633.
  • Vadlapudi, A.D., Krishna, R., Pal, D., Mitra, A.K. Molecular expression and functional activity of sodium dependent multivitamin transporter in human prostate cancer cells. Int. J. Pharm. 2012, 436, 324–331.
  • Patel, M., Vadlapatla, R.K., Shah, S., Mitra, A.K. Biotin uptake by T47D breast cancer cells: Functional and molecular evidence of sodium-dependent multivitamin transporter (SMVT). Int. J. Pharm. 2013, 441, 535–543.
  • Juzeniene, A. Chlorin e6-based photosensitizers for photodynamic therapy and photodiagnosis. Photodiagnosis Photodyn. Ther. 2009, 6, 26630–26637.
  • Kamkaew, A., Cheng, L., Goel, S., Valdovinos, V.F., Barnhart, T.E., Liu, Z., Cai, W.B. Cerenkov radiationinduced photodynamic therapy using chlorin e6-loadedhollow mesoporous silica nanoparticles. ACS Appl.Mater. Interfaces 2016, 8, 26630–26637.
  • Peloi, L.S., Soares, R.R.S., Biondo, C.E.G. , Souza, V.R., Hioka, N., Kimura, E.2008. Photodynamic effect of light-emitting diode light on cell growth inhibition induced by methylene blue, Journal of Biosciences.,33(2), 231–237.
  • Kwiatkowski, S., Knap, B., Przystupski, D., Saczko, J., Kedzierska, E., Knap-czop, K., Kotlinska, J., Michel, O., Kotowski, K., Kulbacka, J. Photodunamic therapy–mechanisms, photosensitizers and combinations.Biomed. Pharm. 2018, 106, 1098–1107.
  • Pramuala, S., Lirdprapamongkol, K., Svasti, J., Bergkvist, M., Jouan-Hureaux, V., Arnoux, P., Frochot, C., Barberi-Heyob, M., Niamsiria, N. Polymer-lipid-PEG hybrid nanoparticles as photosensitizer carrier for photodynamic therapy. J. Photochem. Photobiol. B Biol. 2017, 173, 12–22.
  • Ghosh, S., Carter, K.A., Lovell, J.F. Liposomal formulations of photosensitizers. Biomaterials 2019, 218, 119341.
  • Muddineti, O.S., Rompicharla, S.V.K., Kumari, P., Bhatt, H., Ghosh, B., Biswas, S. Lipid and poly (ethylene glycol)-conjugated bi-functionalized chlorine e6 micelles for NIR-light induced photodynamic therapy. Photodiagnosis Photodyn. Ther. 2020, 29, 101633.
  • Marangon, I., Ménard-Moyon, C., Silva, A.K.A., Bianco, A., Luciani, N., Gazeau, F. Synergic mechanisms of photothermal and photodynamic therapies mediated by photosensitizer/carbon nanotube complexes. Carbon 2016, 97, 110–123.
  • Mantareva, V., Iliev, I., Sulikovska, I., Durmuş, M., Angelov, I. Cobalamin (Vitamin B12) in Anticancer Photodynamic Therapy with Zn(II) Phthalocyanines. Int. J. Mol. Sci. 2023; 24(5):4400.
  • Yurttaş, G.A., Çınar K. P. Aeruginosa Bakterisinin Vitamin B Kompleksi ve Kırmızı Lazer Kullanılarak İnaktive Edilmesi. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi. 2022; 13(3): 353-363.
  • Su, L., Huang, J., Li, H. Chitosan-riboflavin composite film based on photodynamic inactivation technology for antibacterial food packaging. Int. J. Biol. Macromol. 2021;172:231-240.
  • Yurttaş, G.A., Gökduman, K., Hekim, S.N. 2022. Liposomes Loaded with Activatable Disulfide Bridged Photosensitizer: Towards Targeted and Effective Photodynamic Therapy on Breast Cancer Cells. Biointerface Res. Appl. Chem., Volume 12, Issue 1, 304 -325.
  • Birgül, K., Uba, A.İ., Çuhadar, O., Koçyiğit, S.S., Tiryaki, S., Tiber, P.M., Orun,O., Telci, D., Yılmaz, Ö., Kemal Yelekçi, K., Küçükgüzel, G.K. ‘’Synthesis and molecular modeling of MetAP2 of thiosemicarbazides, 1,2,4-triazoles, thioethers derived from (S)-Naproxen as possible breast cancer agents’’. J. Mol. Struct. 1259 (2022) 132739.
  • Pham, T., Bui, L., Kim, G., Hoang, D., Tran, T., Hoang, M. Cancers in Vietnam Burden and Control Efforts: A Narrative Scoping Review. Cancer Contr. 2019, 26, 1–14.
  • Naidoo, C., Kruger, C.A., Abrahamse, H. Photodynamic Therapy for Metastatic Melanoma Treatment. Technol. Cancer Res. Treat. 2018, 17, 1–15.
  • Chen, D., Song, M., Huang, J., Chen, N., Xue, J., Huang, M. Photocyanine: A novel and effective phthalocyanine-based photosensitizer for cancer treatment. J. Innov. Opt. Health Sci. 2020, 13, 2030009.
  • O’driscoll, L.; Clynes, M. Biomarkers and multiple drug resistance in breast cancer. Curr. Cancer Drug Targets 2006, 6, 365–384.
  • Jackowska, A., Gryko, D. Vitamin B12 Derivatives Suitably Tailored for the Synthesis of Photolabile Conjugates. Org. Lett. 2021, 23, 4940–4944.
  • Abrahamse, H., Tynga, I. Nano-mediated photodynamic therapy for cancer: Enhancement of cancer specificity and therapeutic effects. Nanomaterials 2018, 923, 1–14.
  • Choi, Y., Weissleder, R., Tung, C.H. Selective Antitumor Effect of Novel Protease-Mediated Photodynamic Agent. Cancer Res. 2006; 66(14), 7225-7229.
  • Gibis, M., Vogt, E., Weiss J. Encapsulation of polyphenolic grape seed extract in polymercoated liposomes. Food & Funct. 2012; 3(3),246-254.
  • Oskouei, Z.M, Biçim, G., Yalçın, A.S. C vitamini, E vitamini ve polifenol ekstresi içeren lipozomların eldesi ve antioksidan aktivitelerinin karşılaştırılması. Marmara Med J. 2014; 27, 166-170.
  • Kırtıl, E., Öztop, M.H. Liposomes as an Encapsulation Agent for Food Applications: Structure, Characterization, Manufacture and Stability. Akademik Gıda. 2014; 12(4) ,41-57.
  • Slow-targeted release of a ruthenium anticancer agent from vitamin B 12 functionalized marine diatom microalgae. 2020. Accessed February 25, 2023.
  • Chun, J.Y., Choi, M.J., Min, S.G., Weiss, J. Formation and stability of multiple-layered liposomes by layer-by-layer electrostatic deposition of biopolymers. Food Hydrocoll. 2013; 30(1), 249-257.
  • José, H. Correia, J.H., Rodrigues, J.A., Pimenta, S., Dong, T., Yang, Z., Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions. Pharmaceutics 2021, 13(9), 1332.
  • De Jode, M.L., Mcgıllıgan, J.A., Dılkes, M.G., Cameron, I., Hart, P.B., Grahn, M.F. A Comparison of Novel Light Sources for Photodynamic Therapy. Lasers in Medical Science. 1997, 12:260-268.
  • Yurttaş¸ A.G., Sevim, A.M., Çınar, K., Atmaca, G.Y., Erdoğmus, A., Gül, A. The effects of zinc(II)phthalocyanine photosensitizers on biological activities of epitheloid cervix carcinoma cells and precise determination of absorbed fluence at a specific wavelength. Dyes Pigm.. 2022; 198, 110012 .
Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi-Cover
  • ISSN: 2146-247X
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2010
  • Yayıncı: Zehra ÜSTÜN