COVID-19 Patogenezinde Diyetin Bağırsak-Akciğer Ekseni Üzerine Potansiyel Etkileri

Dünya çapında milyonlarca insan SARS-CoV-2 virüsünün neden olduğu ve COVID-19 olarak bilinen yeni koranavirüs hastalığından etkilenmiş durumdadır. COVID-19 enfeksiyonu, asemptomatik bir enfeksiyon olarak ortaya çıkabildiği gibi öksürük, titreme, ateş, yorgunluk ve nefes darlığı şeklinde belirtilerle karakterize bir solunum yolu hastalığı olarak da görülebilmektedir. Çoklu organ yetmezliği olan ağır hastalarda, şiddetli akut inflamasyon ve sitokin fırtınası olarak adlandırılan aşırı sitokin salınımı söz konusudur. Virüs ile enfekte bazı kişilerde diyare ve gastrointestinal sistemde tutulum görülmesi bağırsak mikrobiyotasını ve bağırsak-akciğer eksenini akla getirmektedir. COVID-19’un kötü klinik sonuçları yaşlılık ve komorbidite varlığı gibi spesifik risk faktörleri ile ilişkili olması ve aynı zamanda bu risk faktörlerinin de sağlıksız mikrobiyota ile ilişkili olması bu ihtimali kuvvetlendirmektedir. Bağırsak-akciğer ekseninin COVID-19 için çift yönlü hareket ettiği düşünülmektedir. Mikrobiyota kaynaklı endotoksinler ve metabolitler, akciğerleri dolaşım aracılığı ile etkileyebilmekte ve akciğerde inflamasyon oluştuğunda bu durum ise bağırsak mikrobiyotasını etkileyebilmektedir. Bununla birlikte bağırsak mikrobiyotası ile immün sistem arasındaki denge halinde bozulma meydana geldiğinde inflamatuar süreçler başlamaktadır. Diyet, bağırsak mikrobiyotasının şekillenmesinde önemli bir rol oynamaktadır ve bağırsak-akciğer ekseni boyunca etki eden farklı diyet faktörleri gündeme gelmiştir. Bunlardan kısa zincirli yağ asitlerinin, bağırsak-akciğer ekseni boyunca anti-inflamatuar ve immün yanıtı düzenleyici etkisi olduğu düşünülmektedir. Polifenoller, vitamin ve mineraller gibi besin bileşenlerinin bağırsak mikrobiyotası üzerinde immün yanıtı düzenleyici önemli etkileri bulunabilmektedir. Probiyotikler, prebiyotikler ve diyet lifi gibi diyet takviyeleri ile birlikte kişiselleştirilmiş, bütüncül bir diyet, COVID-19'dan etkilenen hastalarda iyileşmeyi hızlandırmak ve klinik sonuçları geliştirmek için umut vadeden bir yaklaşım olabilir. Bu derlemenin amacı, bağırsak-akciğer ekseni ve mikrobiyota ilişkili diyet faktörleri ve COVID-19 üzerine potansiyel etkilerinin açıklanmasıdır.

Potential Effects of Diet on the Gut-Lung Axis in the Pathogenesis of COVID-19

Millions of people around the world are affected by the novel coranavirus disease known as COVID-19, caused by the SARS-CoV-2 virus. COVID-19 infection can be observed as an asymptomatic infection, or a respiratory disease characterized by symptoms such as cough, fever, fatigue and shortness of breath. Severe acute inflammation and cytokine release can be detected in patients with multiple organ failure. Diarrhea and gastrointestinal involvement in some people infected with the virus suggest the role of gut microbiota and the gut-lung axis. The bad clinical consequences of COVID-19 are associated with specific risk factors such as old age and the presence of comorbidity, and at the same time, these risk factors are also associated with unhealthy microbiota. The gut-lung axis is thought to be bidirectional for COVID-19. Microbiota-derived endotoxins and metabolites can affect the lungs through circulation, and when inflammation occurs in the lungs, this can affect the intestinal microbiota. When the balance between the intestinal microbiota and the immune system is disrupted, inflammatory processes begin. Diet plays an important role in shaping the gut microbiota, and different dietary factors that act along the gut-lung axis have come into question. Short-chain fatty acids are thought to have anti-inflammatory and immune regulatory effects along the gut-lung axis. Components such as polyphenols can have important effects on the intestinal microbiota thus, regulating the immune response. A personalized diet combined with dietary supplements such as probiotics, prebiotics and dietary fiber could be a promising approach to accelerate recovery and improve clinical outcomes in patients affected by COVID-19. The aim of this review is to describe the gut-lung axis and microbiota-related dietary factors and their potential effects on COVID-19.

___

  • [1] Zabetakis I, Lordan R, Norton C, Tsoupras A. COVID-19: The Inflammation Link and the Role of Nutrition in Potential Mitigation. Nutrients. 2020;12(5).
  • [2] Viana SD, Nunes S, Reis F. ACE2 imbalance as a key player for the poor outcomes in COVID-19 patients with age-related comorbidities - Role of gut microbiota dysbiosis. Ageing Res Rev. 2020;62:101123.
  • [3] Buonaguro L, Tagliamonte M, Tornesello ML, Buonaguro FM. SARS-CoV-2 RNA polymerase as target for antiviral therapy. J Transl Med. 2020;18(1):185.
  • [4] Jiang F, Deng L, Zhang L, Cai Y, Cheung CW, Xia Z. Review of the Clinical Characteristics of Coronavirus Disease 2019 (COVID-19). J Gen Intern Med. 2020;35(5):1545-9.
  • [5] Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):424-32.
  • [6] Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-2.
  • [7] Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62.
  • [8] Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4.
  • [9] Chan KH, Poon LL, Cheng VC, Guan Y, Hung IF, Kong J, et al. Detection of SARS coronavirus in patients with suspected SARS. Emerg Infect Dis. 2004;10(2):294-9.
  • [10] Wu Y, Guo C, Tang L, Hong Z, Zhou J, Dong X, et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol Hepatol. 2020;5(5):434-5.
  • [11] Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395(10223):514-23.
  • [12] Ferolla SM, Armiliato GN, Couto CA, Ferrari TC. The role of intestinal bacteria overgrowth in obesity-related nonalcoholic fatty liver disease. Nutrients. 2014;6(12):5583-99.
  • [13] Augustyn M, Grys I, Kukla M. Small intestinal bacterial overgrowth and nonalcoholic fatty liver disease. Clin Exp Hepatol. 2019;5(1):1-10.
  • [14] Zalar B, Haslberger A, Peterlin B. The Role of Microbiota in Depression - a brief review. Psychiatr Danub. 2018;30(2):136-41.
  • [15] Dhar D, Mohanty A. Gut microbiota and Covid-19- possible link and implications. Virus Res. 2020;285:198018.
  • [16] Conte L, Toraldo DM. Targeting the gut-lung microbiota axis by means of a high-fibre diet and probiotics may have anti-inflammatory effects in COVID-19 infection. Ther Adv Respir Dis. 2020;14:1753466620937170.
  • [17] Dang AT, Marsland BJ. Microbes, metabolites, and the gut-lung axis. Mucosal Immunol. 2019;12(4):843-50.
  • [18] Acarkan T, Erdoğan D, Kacar M. Covid-19 ile mücadelede akciğer ve bağırsak mikrobiyotalarının rolü. Anatolian Clinic the Journal of Medical Sciences. 2020;25(Special Issue on COVID 19):284-93.
  • [19] He Y, Wen Q, Yao F, Xu D, Huang Y, Wang J. Gut-lung axis: The microbial contributions and clinical implications. Crit Rev Microbiol. 2017;43(1):81-95.
  • [20] Dumas A, Bernard L, Poquet Y, Lugo-Villarino G, Neyrolles O. The role of the lung microbiota and the gut-lung axis in respiratory infectious diseases. Cell Microbiol. 2018;20(12):e12966.
  • [21] Fagundes CT, Amaral FA, Vieira AT, Soares AC, Pinho V, Nicoli JR, et al. Transient TLR activation restores inflammatory response and ability to control pulmonary bacterial infection in germfree mice. J Immunol. 2012;188(3):1411-20.
  • [22] Budden KF, Gellatly SL, Wood DL, Cooper MA, Morrison M, Hugenholtz P, et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol. 2017;15(1):55-63.
  • [23] Bartley JM, Zhou X, Kuchel GA, Weinstock GM, Haynes L. Impact of Age, Caloric Restriction, and Influenza Infection on Mouse Gut Microbiome: An Exploratory Study of the Role of Age-Related Microbiome Changes on Influenza Responses. Front Immunol. 2017;8:1164.
  • [24] Gou W, Fu Y, Yue L, Chen G-d, Cai X, Shuai M, et al. Gut microbiota may underlie the predisposition of healthy individuals to COVID-19. medRxiv. 2020:2020.04.22.20076091.
  • [25] Zuo T, Zhang F, Lui GCY, Yeoh YK, Li AYL, Zhan H, et al. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology. 2020;159(3):944-55.e8.
  • [26] Aktas B, Aslim B. Gut-lung axis and dysbiosis in COVID-19. Turk J Biol. 2020;44(3):265-72.
  • [27] Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202(3):415-24.
  • [28] Dickson RP, Singer BH, Newstead MW, Falkowski NR, Erb-Downward JR, Standiford TJ, et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat Microbiol. 2016;1(10):16113.
  • [29] Muslu M, Ersü DÖ. Yeni Koronavirüs (SARS-CoV-2/COVID-19) Pandemisi Sırasında Beslenme Tedavisi ve Önemi. Beslenme ve Diyet Dergisi. 2020;48(1):73-82.
  • [30] Tamer A, Nalbant A. Beslenme ve Bağışıklık Sistemi. Sakarya Tıp Dergisi.11(2):458-66.
  • [31] de Faria Coelho-Ravagnani C, Corgosinho FC, Sanches FLFZ, Prado CMM, Laviano A, Mota JF. Dietary recommendations during the COVID-19 pandemic. Nutr Rev. 2021;79(4):382-93.
  • [32] Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105-8.
  • [33] Voigt RM, Forsyth CB, Green SJ, Mutlu E, Engen P, Vitaterna MH, et al. Circadian disorganization alters intestinal microbiota. PLoS One. 2014;9(5):e97500.
  • [34] Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20(2):159-66. [35] Trompette A, Gollwitzer ES, Pattaroni C, Lopez-Mejia IC, Riva E, Pernot J, et al. Dietary Fiber Confers Protection against Flu by Shaping Ly6c(-) Patrolling Monocyte Hematopoiesis and CD8(+) T Cell Metabolism. Immunity. 2018;48(5):992-1005.e8.
  • [36] Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14(8):491-502.
  • [37] Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506-14.
  • [38] West CE, Dzidic M, Prescott SL, Jenmalm MC. Bugging allergy; role of pre-, pro- and synbiotics in allergy prevention. Allergol Int. 2017;66(4):529-38.
  • [39] Baindara P, Chakraborty R, Holliday ZM, Mandal SM, Schrum AG. Oral probiotics in COVID-19: connecting the gut-lung axis to viral pathogenesis, inflammation, secondary infection, and clinical trials. New Microbes New Infect. 2021:100837.
  • [40] Rishi P, Thakur K, Vij S, Rishi L, Singh A, Kaur IP, et al. Diet, Gut Microbiota and COVID-19. Indian J Microbiol. 2020;60(4):1-10.
  • [41] Choi Y, Lee S, Kim S, Lee J, Ha J, Oh H, et al. Vitamin E (α-tocopherol) consumption influences gut microbiota composition. Int J Food Sci Nutr. 2020;71(2):221-5.
  • [42] Stacchiotti V, Rezzi S, Eggersdorfer M, Galli F. Metabolic and functional interplay between gut microbiota and fat-soluble vitamins. Crit Rev Food Sci Nutr. 2020:1-22.
  • [43] Buyken AE, Goletzke J, Joslowski G, Felbick A, Cheng G, Herder C, et al. Association between carbohydrate quality and inflammatory markers: systematic review of observational and interventional studies. Am J Clin Nutr. 2014;99(4):813-33.
  • [44] Donati Zeppa S, Agostini D, Piccoli G, Stocchi V, Sestili P. Gut Microbiota Status in COVID-19: An Unrecognized Player? Front Cell Infect Microbiol. 2020;10:576551.
Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi-Cover
  • ISSN: 2146-247X
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2010
  • Yayıncı: Zehra ÜSTÜN
Sayıdaki Diğer Makaleler

Diş Anatomisi Dersi Uygulamalarının Öğrencilerin Psikomotor Becerileri Üzerindeki Etkisi

Erdal EROĞLU, Zeynep BAŞAĞAOĞLU DEMİREKİN, Merve ERKEN

Egzersiz Temelli Kardiyak Rehabilitasyon Programının Koroner Arter Hastalarında Fonksiyonel Kapasite, Kinezyofobi Düzeyi ve Yaşam Kalitesi Üzerine Etkisi

İsmail OKUR, Cihan Caner AKSOY, Fatıma YAMAN, Taner ŞEN

Üst Gömülü Kanin Dişlerin Maksiller Kaide ile İlişkisinin Değerlendirilmesi

Sanaz SANDRY, Ahmet KARAMAN

Primer Total Diz Artroplastisi Hastalarında Rehabilitasyon Protokolüne Ek Olarak Uygulanan Manuel Lenfatik Drenajının Etkileri: Klinik Ön Sonuçlar

Emine CİHAN, NECMİYE ÜN YILDIRIM, Onur BİLGE, YEŞİM BAKAR, Mahmut Nedim DORAL

COVID-19 Patogenezinde Diyetin Bağırsak-Akciğer Ekseni Üzerine Potansiyel Etkileri

Aslı YİĞİT, Aliye KUYUMCU

Gıda Hizmetlerinde Sürdürülebilirlik

Hatice BAYGUT, SANİYE BİLİCİ

Beyaz Yakalı Çalışanlarda Sosyo-demografik Özelliklere Göre Beslenmenin Yaşam Kalitesine Etkisi

Burcu KORKUT, Nergiz SEVİNÇ

Ord. Prof. Dr. Kemal Cenap Berksoy ve Türk Fizyolojisindeki Önemi

Görkem Melike ARKAN, Fuat İNCE, Mustafa SAYGIN

Deney Hayvanlarında Oluşturulan Periapikal Lezyon Modelinde Selenyumun Kandaki Oksidatif Stres Parametreleri Üzerine Etkileri

Nergiz BOLAT, Bulem ÜREYEN KAYA, İLTER İLHAN, Halil AŞÇI, Yalçın ERZURUMLU

Lisansüstü Hemşirelik Öğrencilerinin Yenilikçi Özellikleri ile Araştırmaya Yönelik Farkındalıkları Arasındaki İlişki

PELİN KARAÇAY, Özlem YAZICI, Ayda KEBAPÇI