Yersel lazer tarama ile tek ağaç özelliklerinin belirlenmesi

Bu çalışma, sabit bir noktadan Yersel Lazer Tarama (YLT) ile elde edilen veriler kullanılarak bazı tek ağaç özelliklerinin belirlenmesi amacıyla yapılmıştır. Çalışma, Kuzey İngilteredeki bir kent ormanında bulunan, iki kayın, iki Korsika çamı ve bir Duglas göknarı meşceresinde gerçekleştirilmiştir. Tek ağaçta -çap, ağaç boyu, tepe boyu, tepe çapı- özellikleri, hem yersel hem de lazer nokta bulutu üzerinden ölçülmüştür. Toplam 127 ağaçta (Kayın + Korsika çamı) göğüs çapı ve 45 ağaçta (Korsika çamı) ağaç boyu, tepe boyu ve tepe çapı belirlenmiştir. Sıklığın yüksek olduğu (ağaç sayısı 1393 ha-1) Duglas göknarı meşceresinden alınan örnek alanda ise herhangi bir ölçüm yapılamamıştır. Arazide doğrudan ölçümle elde edilen ve lazer verisinden çıkarılan ağaç özellikleri arasındaki ilişkiler basit regresyon analizleriyle ortaya koyulmuştur. Elde edilen belirtme katsayıları (R2) ve ortalama hata kareleri karekökü (RMSE) değerleri sırasıyla, göğüs çapı için 0,91 ve 5,84 cm; ağaç boyu için 0,88 ve 1,1 m; tepe boyu için 0,83 ve 1 m; tepe çapı için ise 0,65 ve 0,81 mdir. Tek noktadan taranan lazer verileriyle; a) sıklığın düşük olduğu meşcerelerde belirli miktardaki gövdede göğüs çapı; b) tepe kapalılığının düşük olduğu (

Determination of individual tree characteristics with terrestrial laser scanning

In this study, the potential of Terrestrial Laser Scanning (TLS) data obtained from a single point on determination of some individual tree characteristics was assessed. The study was carried out in two beech stands, two Corsican pine stands, and one Douglas fir stand located in an urban woodland in the North England. The targeted tree attributes including diameter at breast height (DBH), tree height, crown base height, and crown width were determined both by the field measurements and from the laser point cloud data. Totally, we measured the DBH in 127 trees in the beech and Corsican pine plots, and the tree height, crown base height, and crown width were determined in 45 trees in only the Corsican pine plots. However, we were not able to measure any tree attributes on the laser point cloud in the sampling plot taken from Douglas fir stand due to high stand density (1393 trees ha-1). The relationships between field-measured and laser-derived tree attributes were determined using simple regression analyses. The obtained determination coefficients (R2) and root mean square errors (RMSE) were; 0,91 and 5.84 cm for DBH; 0,88 and 1,1 m for tree height; 0,83 and 1 m for crown base height; 0,65 and 0,81 m for crown with, respectively. It was concluded that using laser data obtained from a single scan, a) the DBH in definite rate of individuals might be measured in the forest stands with low density; and similarly in some trees, b) the tree height and the other crown characteristics might be determined in conifer stands with a canopy cover less than 70 percent.

___

  • Altuntaş, C., Yıldız, F., 2008. Yersel lazer tarayıcı ölçme prensipleri ve nokta bulutlarının birleştirilmesi. HKM Jeodezi, Jeoinformasyon ve Arazi Yönetimi Dergisi, 98, 20-27.
  • Antonarakis, A.S., Richards, K.S., Brasington, J., Bithell, M., Muller, E. 2009. Leafless roughness of complex tree morphology using terrestrial lidar. Water Resources Research, 45, W10401.
  • Baskent, E. Z.; Jordan, G. A. 1996. Designing forest management to control spatial structure of landscapes. Landscape and Urban Planning 34(1): 55–74.
  • Baskent, E. Z. 1999. Controlling spatial structure of forested landscapes: a case study towards landscape management. Landscape Ecology 14(1): 83–97.
  • Clawges, R., Vierling, L., Calhoon, M., Toomey, M., 2007. Use of a ground-based scanning lidar for estimation of biophysical properties of western larch (Larix occidentalis). International Journal of Remote Sensing, 28:19, 4331-4344.
  • Clawges, R., Vierling, K., Vierling, L., Rowell, E. 2008. The use of airborne lidar to assess avian species diversity, density and occurrence in a pine/aspen forest. Remote Sensing of Environment. 112, 2064-2073.
  • Danson, F.M., Hetherington, D., Morsdorf, F., Koetz, B and Allgöwer, B., 2007, Three-dimensional forest structure from terrestrial laser scanning. IEEE Geoscience and Remote Sensing Letters, 4, 157-160.
  • Fleck S, Obertreiber N, Schmidt I, Brauns M, Jungkunst HF, Leuschner C, 2007. Terrestrial lidar measurements for analysing canopy structure in an old-growth forest. IAPRS Volume XXXVI, Part 3 / W52, 125-129.
  • Henning, J.G., Radtke, P.J. 2006. Detailed stem measurements of standing trees from ground-based scanning lidar. Forest Science, 52:67–80.
  • Hinsley, S.A., Hill, R.A., Fuller, R.J., Bellemy, P.E., Rothery, P., 2009. Bird species distributions across woodland canopy structure gradients. Community Ecology. 10, 99-110.
  • Hopkinson, C., Chasmer, L., Young-Pow, C., Treitz, P., 2004, Assessing forest metrics with a ground-based scanner lidar. Canadian Journal of Forest Research, 34, 573–583.
  • Lefsky, M. A., Cohen, W. B., Parker, G. G., Harding, D. J., 2002. Lidar remote sensing for ecosystem studies. BioScience, 52, 19–30.
  • Lexerod, N.L., Eid, T., 2006. An evaluation of different diameter diversity indices based on criteria related to forest management planning. Forest Ecology and Management. 222, 17–28.
  • Lovell, J.L.; Jupp, D.L.B.; Culvenor, D.S.; Coops, N.C. 2003. Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests. Canadian Journal of Remote Sensing. 29, 607-622.
  • MacArthur, R.H., MacArthur, J.W., 1961. On bird species diversity. Ecology 42, 594-598.
  • Magurran, A.E., 1988. Ecological Diversity and Its Measurement. Princeton University Press, Princeton, New Jersey.
  • Özdemir, İ., Karnieli, A., 2011. Predicting forest structural parameters using the image texture derived from WorldView-2 multispectral imagery in a dryland forest, Israel. International Journal of Applied Earth Observation and Geoinformation. 13, 701-710.
  • Özkan, K., 2012. Taksonomik çeşitlilik indislerinin geleneksel çeşitlilik indisleri ile karşılaştırılması. SDÜ Orman Fakültesi Dergisi. 13, 107-112.
  • Parker, G.G., Hardıng, D.J., Bergera, M.L., 2004. A portable LIDAR system for rapid determination of forest canopy structure, Journal of Applied Ecology, 41, 755–767.
  • Schütt, C.; Aschoff, T.; Winterhalder, D.; Thies, M.; Kretschmer, U., Spiecker, H., 2004. Approaches for recog-nition of wood quality of standing trees based on terrestrial laserscanner data. In: Thies, M.; Koch, B.; Spiecker, H.; Weinacker, H. (ed.), Laser-Scanners for Forest and Landscape Assessment. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences Vol. XXXVI- 8/W2.
  • Tansey, K., Selmes, N., Anstee, A., Tate, N.J., Denniss, A., 2009, Estimating tree and stand variables in a Corsican Pine woodland from terrestrial laser scanner data. International Journal of Remote Sensing, 30, 19, pp. 5195-5209.
  • Thies, M., Pfeifer, N., Winterhalter, D., Gorte, BGH., 2004. Evaluation And Future Prospects of Terrestrial Laser Scanning For Standardized Forest Inventories, Scandinavian Journal of Forest Research, 19, 571-581.
  • Watt, P.J., Donoghue, D.N.M., 2005, Measuring forest structure with terrestrial laser scanning. International Journal of Remote Sensing, 26, pp. 1437–1446.
  • Wood, E.M., Pidgeon, A.M., Mladenoff, D.J., Liu. F., 2012. Birds see the trees inside the forest: the potential impacts of changes in forest composition on songbirds during spring migration. Forest Ecology and Management. 280, 176-186.
Türkiye Ormancılık Dergisi-Cover
  • ISSN: 1302-7085
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2000