Mersin Kuvars Kumunun X-Işınları ile Termoluminesans Özelliklerinin Çalışılması

Özet: Mersin Yeşilovacık Kuvars yataklarından alınan kuvars kumu örneklerinin Termolüminesansı (TL), oda sıcaklığından 400oC'ye kadar X-ışınları ile ışınlandıktan sonra çalışılmıştır. Termoluminesans tuzak parametreleri Çeşitli Isıtma Hızı Oranı Yöntemi ile hesaplanmıştır. Isıtma hızları 0.5oC/s, 1oC/s, 2oC/s, 5oC/s ve 10oC/s olarak seçilmiştir. TL eğrilerindeki 90oC, 210oC ve 320oC maksimum sıcaklıklarına karşılık gelen tepe değerlerindeki kaymalar farklı ısıtma hızlarına göre tespit edilmiştir. Tepe sıcaklıklarındaki kaymalardan farklı ısıtma yöntemi ile tuzak parametreleri; aktivasyon enerjisi (E), frekans faktörü (s) hesaplanmıştır. Hesaplanan aktivasyon enerjileri ve frekans faktörü sırasıyla 0.84eV, 2.84x1010 s-1, 1.13eV, 2.34x1013 s-1 ve 1.78eV, 1.59x1018s-1 olarak bulunmuştur. Anahtar kelimeler: Kuvars, termoluminesans, tuzak parametreleri Studies of Thermoluminescence Properties of Mersin's Quartz Sand with X-ray Irradiation Abstract: The quartz samples collected from quartz sand deposits from Yeşilovacık Mersin region were studied Thermoluminescence (TL) from room temperature to 400oC after irradiated by X-ray source. Thermoluminescence trap parameters were calculated via Various Heating Rate (VHR) method. Heating rates were selected as 0.5oC/s, 1oC/s, 2oC/s, 5oC/s, 10oC/s. The peak maximum temperature shift values from TL glow curve at 90oC, 210oC and 320oC were monitored by VHR method. The temperature shift along to heating rates were used to calculate the trap parameters as Activation Energy (E) and Frequency Factor (s). The activation and frequency factor values were obtained as 0.84eV, 2.84x1010 s-1, 1.13eV, 2.34x1013 s-1 and 1.78eV, 1.59x1018s-1 at selected peaks. Key words: Quartz, thermoluminescence, trap parameters

Mersin Kuvars Kumunun X-Işınları ile Termoluminesans Özelliklerinin Çalışılması

The quartz samples collected from quartz sand deposits from Yeşilovacık Mersin region were studied Thermoluminescence (TL) from room temperature to 400oC after irradiated by X-ray source. Thermoluminescence trap parameters were calculated via Various Heating Rate (VHR) method. Heating rates were selected as 0.5oC/s, 1oC/s, 2oC/s, 5oC/s, 10oC/s. The peak maximum temperature shift values from TL glow curve at 90oC, 210oC and 320oC were monitored by VHR method. The temperature shift along to heating rates were used to calculate the trap parameters as Activation Energy (E) and Frequency Factor (s). The activation and frequency factor values were obtained as 0.84eV, 2.84x1010 s-1, 1.13eV, 2.34x1013 s-1 and 1.78eV, 1.59x1018s-1 at selected peaks

___

  • Demange M., 2012. Mineralogy for Petrologists, Taylor & Francis Group, LLC.
  • Heany P.J, Prewitt C.T, Gibbs, G.V., 1994. Silica-physical behaviour, geochemistry and materials application, Reviews in Mineralogy, vol 29. Mineralogical Society of America, Washington, p 606
  • Yokota, R., 1953. Thermoluminescence of Quartz and Fused Quartz Colored by X-Ray Irradiation, Physical Reviews, 91: 1013.
  • Daniels F., Boyd C.A., Saunders D.F., 1953. Thermoluminescence as a research Tool, Science, 117: 343- 349.
  • Fleming SJ., 1970. Thermoluminesans dating refinement of quartz inclusion method, Archaeometry, 12: 135-145.
  • Huntley D.J., Short M.A., Dunphy K., 1996. Deep traps in quartz and their use for optical dating, Canadian Journal of Physics, 74: 81-91.
  • Aitken M.J., 1985. Thermoluminescence Dating, Academic Press, London, p 359.
  • Göksu H.Y., Fremlin J. H., 1972. Thermoluminescence from unirradiated flints: regeneration thermoluminescence, Archaeometry, 14(1): 127–132.
  • [ 9] McKeever, S. W. S., 1985. Thermoluminescence of Solids, Cambridge University Press, Cambridge, UK., p.376.
  • Krbetschek M.R., Goetze J., Dietrich A., Trautmann T., 1997. Spectral information from minerals relevant for luminescence dating, Radiation Measurements, 27(5-6): 695-748.
  • Bİtter-Jensen L., Andersen C. E., Duller G.A.T., Murray A.S., 2003a. Developments in radiation, stimulation and observation facilities in luminescence measurements, Radiation Measurements, 37: 535-541.
  • Gartia R. K., Singh L.L., 2011. Evaluation of trapping parameter of quartz by deconvolution of the glow curves, Radiation Measurements, 46: 664-668.
  • Wintle V., 1975. Thermal quenching of thermoluminescence in Quartz, Geophysical Journal of the Royal Astronomical Society, 41: 107-113.
  • Demars, C., Pagel M., Deloule E., Blanc P., 1996. Cathodoluminescence of Quartz From Sandstones: Interpretation of The Uv Range by Determination of Trace Element Distributions and Fluid- Inclusion P-T-X Properties in Authigenic Quartz, American Mineralogist, 81: 891-901.
  • Huntley D. J., Godfrey-Smith, D. I., Haskell, E. H., 1991. Light-induced emission spectra from some quartz and feldspars, International Journal of Radiation Applications and Instrumentation, 18: 127- 131.
  • Smith B. W., Rhodes E. J., Stokes S., Spooner N.A., 1990. The optical dating of sediments using quartz, Radiation Protection Dosimetry, 34: 75-78.
  • Topaksu M., Dogan T., Yüksel M., Kurt K., Topak Y., Yegingil Z., 2014. Comparative study of the thermoluminescence properties of natural metamorphic quartz belonging to Turkey and Spain, Radiation Physics and Chemistry, 96: 223–228.
  • Bohum A., 1954. Emission aus nichtmetallischen kristallen, Czechoslovak Journal of Physics, 4:91-99.
  • Hoogenstraaten W., 1958. Electron traps in zinc-sulphide phosphors, Philiphs Research Reports, 13: 515- 693.
  • Kitis G., Tuyn J. W. N., 1999. Correction for temperature lag and thermal gradient effects arising during thermoluminescence readout, Radiation Protection Dosimetry, 84(1-4): 371-374.
  • Pagonis V., Tatsis E., Kitis G., Drupieski C., 2002. Search for common characteristics in the glow curves of quartz of various origins, Radiation Protection Dosimetry, 100(1-4): 373-376.
  • Yazici A. N., Topaksu M. 2003. The analysis of thermoluminescence glow peaks of unannealed synthetic quartz, Journal of Physics D: Applied Physics, 36: 620–627.
  • Petrov S. A., Bailiff I. K., 1995. The 110°C TL Peak in synthetic quartz, Radiation Measurements, 24(4): 519-523.
  • İlbilge Özsu e-posta: ilbilgeozsu@gmail.com
Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi-Cover
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2006
  • Yayıncı: Süleyman Demirel Üniversitesi Fen-Edebiyat Fakültesi
Sayıdaki Diğer Makaleler

Ag-Katkılı BiPbSrCaCuO Seramiklerinin SEM ve XRD Analizleri

Ali UZUNOĞLU, Gönül BİLGEÇ AKYÜZ, Gönül BİLGEÇ AKYÜZ

Toprak Radon (222Rn) Gazı Anomalilerinin ARIMA Analizi

Miraç KAMIŞLIOĞLU, Fatih KÜLAHCI, Seçil NİKSARLIOĞLU

Li2B4O7:Cu Termolüminesans Dedektörün Farklı Enerjilerdeki Fotonlara Karşı Dedektör Cevap Fonksiyonunun Monte Carlo Yöntemiyle İncelenmesi

Bünyamin AYDIN, M. Mustafa AYDIN

Burdur İli Karasal ve İç Su Ekosistem Çeşitliliği, Koruma ve İzleme Çalışmaları

Hasan ÖZÇELİK, İlker ÇİNBİLGEL, Belkıs MUCA, Ahmet KOCA, İbrahim TAVUÇ, Özlem BEBEKLİ

Delta Tipi Engel Potansiyeli Olan Kane Tipi Yarıiletkenlerde Elektronların Etkin g-Çarpanı

Arif BABANLI, Deniz TÜRKÖZ ALTUĞ

Zr, I, Pr, Au ve Pb Fotonötron Reaksiyon Tesir Kesitleri

Hüseyin SALMAN, Ufuk AKÇAALAN, Rıdvan ÜNAL, H. Ali YALIM, Bekir ORUNCAK

LiF:MgCuNaSi Termolüminesans Dedektörün Farklı Enerjilerdeki Fotonlara Karşı Dedektör Cevap Fonksiyonun Monte Carlo Yöntemiyle İncelenmesi

Bünyamin AYDIN, Mehmet N. KUMRU, Gültekin YEĞİN, M. Mustafa AYDIN

197Au Çekirdeği İçin(γ,n) Tesir Kesitlerinin Reaksiyon Sınırının Altında ve Üstünde Hesaplanması

Mesut ALTINTAŞ, Ufuk AKÇAALAN, Rıdvan ÜNAL, H. Ali YALIM, Bekir ORUNCAK

CdS İnce Filmlerinin Değişik Açılarda Spektroelipsometrik Karakterizasyonu

Olcay GENÇYILMAZ, Ferhunde ATAY, İdris AKYÜZ

Eğirdir Gölü’nün (Isparta) Suyunda, Sedimentinde ve Gölde Yaşayan Sazan’ın (Cyprinus carpio L., 1758) Bazı Doku ve Organlarındaki Ağır Metal Düzeylerinin Belirlenmesi

Hüseyin KAPTAN, Selda TEKİN ÖZAN