Investigation of the incorporation of C60 into PC61BM to enhance the photovoltaic performance of inverted-type perovskite solar cells based on MAPbI3

Investigation of the incorporation of C60 into PC61BM to enhance the photovoltaic performance of inverted-type perovskite solar cells based on MAPbI3

Perovskite Solar Cells (PSCs) have managed to significantly capture attention by achieving efficiency values of 25.6% in a remarkably short period of around ten years. Each layer within the device plays a crucial role in the overall device efficiency when it comes to PSC production. PC61BM, a derivative of fullerene, is one of the most commonly used electron-transport layers (ETLs) in inverted-type PSCs. In this study, the improvement of the ETL was aimed by incorporating C60 into PC61BM, and the effects of the doped ETL on MAPbI3-based inverted-type PSCs were investigated. For inverted type PSCs which are fabricated under high humidity (40-60%) and room conditions (~25 °C), the power conversion efficiencies (PCEs) have boosted from 11.54% (for undoped PC61BM) to 13.40% (for C60-doped PC61BM). To comprehend the sources of improvement in the fabricated devices, a series of characterizations were carried out, including Current Density-Voltage (J-V), Hysteresis Factor (HF), Scanning Electron Microscope (SEM), and Atomic Force Microscope (AFM) measurements.

___

  • A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells”, Journal of the American Chemical Society, 131, 6050–6051, 2009.
  • J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells”, Nature, 592, 381–385, 2021.
  • A. K. Jena, A. Kulkarni and T. Miyasaka, “Halide perovskite photovoltaics: background, status, and future prospects”, Chemical Reviews, 119, 3036–3103, 2019.
  • H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%”, Scientific Reports, 2, 591, 2012.
  • M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites”, Science, 338, 643–647, 2012.
  • W. Hu, S. Yang and S. Yang, “Surface modification of TiO2 for perovskite solar cells”, Trends in Chemistry, 2, 148–162, 2020.
  • W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang and Y. Yan, “Lowerature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells”, Journal of the American Chemical Society, 137, 6730–6733, 2015.
  • Q. Jiang, X. Zhang and J. You, “SnO2: a wonderful electron transport layer for perovskite solar cells”, Small, 14, 1–14, 2018.
  • N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene”, Science, 258, 1474–1476, 1992.
  • R. Zahran and Z. Hawash, “Fullerene-based inverted perovskite solar cell: a key to achieve promising, stable, and efficient photovoltaics”, Advanced Materials Interfaces, 9, 1–18, 2022.
  • X. Lin, D. Cui, X. Luo, C. Zhang, Q. Han, Y. Wang and L. Han, “Efficiency progress of inverted perovskite solar cells”, Energy & Environmental Science, 13, 3823–3847, 2020.
  • M. A. Kumari, T. Swetha and S. P. Singh, “Fullerene derivatives: a review on perovskite solar cells”, Materials Express, 8, 389–406, 2018.
  • D. Yang, X. Zhang, K. Wang, C. Wu, R. Yang, Y. Hou, Y. Jiang, S. Liu and S. Priya, “Stable efficiency exceeding 20.6% for inverted perovskite solar cells through polymer-optimized PCBM electron-transport layers”, Nano Letters, 19, 3313–3320, 2019.
  • C. Kuang, G. Tang, T. Jiu, H. Yang, H. Liu, B. Li, W. Luo, X. Li, W. Zhang, F. Lu, J. Fang and Y. Li, “Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells”, Nano Letters, 15, 2756–2762, 2015.
  • J. H. Bae, Y. J. Noh, M. Kang, D. Y. Kim, H. B. Kim, S. H. Oh, J. M. Yun and S. I. Na, “Enhanced performance of perovskite solar cells with solution-processed n-doping of the PCBM interlayer”, RSC Advances, 6, 64962–64966, 2016.
  • F. Xia, Q. Wu, P. Zhou, Y. Li, X. Chen, Q. Liu, J. Zhu, S. Dai, Y. Lu and S. Yang, “Efficiency enhancement of inverted structure perovskite solar cells via oleamide doping of PCBM electron transport layer”, ACS Applied Materials & Interfaces, 7, 13659–13665, 2015.
  • J. S. Yeo, R. Kang, S. Lee, Y. J. Jeon, N. S. Myoung, C. L. Lee, D. Y. Kim, J. M. Yun, Y. H. Seo, S. S. Kim and S. I. Na, “Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer”, Nano Energy, 12, 96–104, 2015.
  • X. Zhu, J. Sun, S. Yuan, N. Li, Z. Qiu, J. Jia, Y. Liu, J. Dong, P. Lv and B. Cao, “Efficient and stable planar perovskite solar cells with carbon quantum dots-doped PCBM electron transport layer”, New Journal of Chemistry, 43, 7130–7135, 2019.
  • Y. Wang, S. Dong, Y. Miao, D. Li, W. Qin, H. Cao, L. Yang, L. Li and S. Yin, “BCP as additive for solution-processed PCBM electron transport layer in efficient planar heterojunction perovskite solar cells”, IEEE Journal of Photovoltaics, 7, 550–557, 2017.
  • Y. Bai, H. Yu, Z. Zhu, K. Jiang, T. Zhang, N. Zhao, S. Yang and H. Yan, “High performance inverted structure perovskite solar cells based on a PCBM:polystyrene blend electron transport layer”, Journal of Materials Chemistry A, 3, 9098–9102, 2015.
  • E. M. Younes, A. Gurung, B. Bahrami, E.M. El-Maghraby and Q. Qiao, “Enhancing efficiency and stability of inverted structure perovskite solar cells with fullerene C60 doped PC61BM electron transport layer”, Carbon, 180, 226–236, 2021.