Ag-Cu Sıvı Alaşımlarının Yüzey Gerilimi ve Viskozitesinin Tahmini

Bu çalışmanın amacı, ikili sıvı alaşımların viskozitesinin literatürde bulunan tüm viskozite modelleri kullanılarak, 1373K sıcaklıkta ikili sıvı Cu-Ag için yapılan deneylerden elde edilen sonuçları karşılaştırmaktır. Aynı işlem, aynı alaşımın yüzey gerilimi için de 1423 K sıcaklıkta gerçekleştirilmiştir. Literatür araştırmasında, Miedema modelinin, bu alaşımın termofiziksel özelliklerinin belirlenmesinde çok az kullanıldığı gözlendi. Bunun üzerine, bu çalışmada, Miedema modeli kullanılarak, karışımın entalpisi ve aşırı (fazlalık) Gibbs serbest enerjisi hesaplanmıştır. Bu çalışmada yüzey gerilimi ve viskozite değerleri arasında bir ilişki bulunmuştur. Yüzey gerilimi ve viskozite değerleri, sabit bir gümüş oranında, sıcaklıkla ters orantılı ve sabit bir sıcaklıkta bakır içeriği ile doğru orantılı olarak elde edildi ve sonuçlar literatürdeki mevcut veriler ile karşılaştırıldı.

Estimating of Surface Tension and Viscosity of Liquid Ag-Cu Alloys

The present paper compares the results obtained from the experiments for the binary liquid Cu-Ag system at a temperature of 1373K. All viscosity models available in the existing literature on the viscosity dependence of the viscosity of binary liquid alloys were used. The same process was carried out for surface tension at a temperature of 1423 K for a dual liquid Cu-Ag system. In the literature survey, the Miedema model showed little use in determining the thermophysical properties of this alloy. Using Miedema model, the mixture enthalpy and excess Gibbs free energy in the aforementioned models were calculated. In the present study, a correspondence was found between surface tension and viscosity values. Surface tension and viscosity values were inversely proportional to the temperature, at a fixed silver fraction xAg, and directly proportional to copper content at a constant temperature. The obtained results were compared to the data in the existing literature.

___

  • [1] P. Sebo, B. Gallois, C.H.P. Lupis, “The surface tension of liquid silver-copper alloys,” Metall. Mater. Trans. B, 8(3), 691-693, 1977.
  • [2] M. Kucharski, P. Fima, P. Skrzyniarz, W. Przebinda-Stefanowa “Surface tension and density of Cu-Ag, Cu-In and Ag-In alloys,” Arch. Metall.Mater, 51 (3), 389-397, 2006.
  • [3] W. Krause, F. Sauerwald, M. Michalke “Die Oberflächenspannung geschmolzener Metalle und Legierungen Die Oberflächenspannung von Gold, Zink, Gold‐Kupfer‐, Silber‐Kupfer‐und Eisenlegierungen,” Z Anorg Allg Chem., 181(1), 353-371, 1929.
  • [4] J. Lee, T. Tanaka, Y. Asano, S. Hara, “Oxygen adsorption behavior on the surface of liquid Cu-Ag alloys,” Mater Trans., 45(8), 2719-2722, 2004.
  • [5] R. Novakovic, E. Ricci, D. Giuranno, A. Passerone “Surface and transport properties of Ag–Cu liquid alloys,” Surf Sci., 576, 175-187, 2005.
  • [6] B. Gallois, C.H.P. Lupis “Effect of oxygen on the surface tension of liquid copper.” Metall. Mater. Trans. B., 12(3), 549-557, 1981.
  • [7] A. Kasama, T. Iida, Z.-I. Morita, “Temperature dependence of surface tension of liquid pure metals.” J Jpn I Met., 40(10), 1030-1038, 1976.
  • [8] S. Ozawa, M. Nishimura, K. Kuribayashi, “Surface Tension of Molten Silver in Consideration of Oxygen Adsorption Measured by Electromagnetic Levitation,” Int. J. Micro. Sci. App., 33(3), 330310, 2016.
  • [9] F. Aqra, A. Ayyad, “Theoretical calculations of the surface tension of liquid transition metals,” Metall. Mater. Trans. B., 42(1), 5-8, 2011.
  • [10] F. Aqra, A. Ayyad, “Theoretical calculations of the surface tension of Ag (1− x) –Cu (x) liquid alloys,” J. Alloy Compd, 509(19), 5736-5739, 2011.
  • [11] H. Eyring, M. S. Jhon, Significant liquid structures. 1969.
  • [12] K. Grjotheim, J. Holm, B. Lillebuen, “Sufrace tension of liquid binary and ternary chloride mixtures,” Acta Chem. Scan., 26(5), 2050-2062, 1972.
  • [13] E.A. Guggenheim, “Statistical thermodynamics of the surface of a regular solution,” Trans. Faraday Soc., 41(0), 150-156, 1945.
  • [14] J. Butler, “The thermodynamics of the surfaces of solutions,” Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character, 135(827), 348-375, 1932.
  • [15] C. Mekler, G. Kaptay, “Calculation of surface tension and surface phase transition line in binary Ga–Tl system.” Mater. Sci.Engin A., 495(1), 65-69, 2008.
  • [16] G. Zeng, B. Friedrich, Editors, “Influencing the Wettability of HSS-Steels by Addition of Alloying Elements to the Zinc Bath.” Proceedings of EMC,” 2009, pp.1-18
  • [17] I. Egry, “The surface tension of binary alloys: simple models for complex phenomena,” Int J Thermophys., 26(4), 931-939, 2005.
  • [18] F. Kohler, “Zur Berechnung der thermodynamischen Daten eines ternären Systems aus den zugehörigen binären Systemen,” Monatsh. für Chem., 91(4), 738-740, 1960.
  • [19] I. Egry, G. Lohöfer, S. Sauerland, “Surface tension and viscosity of liquid metals,” J Non-Cryst Solids., 156, 830-832, 1993.
  • [20] I. Egry, “On the relation between surface tension and viscosity for liquid metals.” Scripta Metall. Mater, 28(10), 1273-1276, 1993.
  • [21] L. Prasad, R. Singh, V. Singh, G. Singh, “Correlation between bulk and surface properties of Ag Sn liquid alloys,” J. Phys. Chem. B., 102(6), 921-926, 1998.
  • [22] J. Miyazaki, J. Barker, G. Pound, “A new Monte Carlo method for calculating surface tension,” J. Chem. Phys., 64(8), 3364-3369, 1976.
  • [23] EA. Moelwyn-Hughes, Physical Chemistry, vol. 83, S. Oxford: Pergamon Press, 1961.
  • [24] Z. Morita, T. Iida, M. Ueda, “The excess viscosity of liquid binary alloys,” -In: Conference on Liquid Metals 1976, Bristol UK., Institute of Physics, Conference Series, 1977, pp. 600-606.
  • [25] M. Kucharski, “The viscosity of multicomponent systems,” Z Metallkd., 77(6), 393-396, 1986.
  • [26] L.Y. Kozlov, L. Romanov, N. Petrov, “Izv. vysch. uch. zav.,” Chernaya Metallurgiya, 3, 7-11, 1983.
  • [27] D. Sichen, J. Bygd'En, S. Seetharaman, “A model for estimation of viscosities of complex metallic and ionic melts,” Metall.Mater. Trans. B., 25(4), 519-525, 1994.
  • [28] T. Kasai, T. Tanaka, S. Kiriyama, “Polymerization degree of oligomethionine to determine its bioavailability when added to a low-protein diets,” Biosci Biotech Bioch., 60(5), 828-834, 1996.
  • [29] I. Budai, M.Z. Benkő, G. Kaptay, “Comparison of different theoretical models to experimental data on viscosity of binary liquid alloys,” Mater. Sci. Forum, 537, 489-496, 2007.
  • [30] M. Schick, J. Brillo, I. Egry, B. Hallstedt, “Viscosity of Al–Cu liquid alloys: measurement and thermodynamic description,” J. Mater. Sci., 47(23), 8145-8152, 2012.
  • [31] Y. Sato, “Representation of the Viscosity of Molten Alloy as a Function of the Composition and Temperature,” Jap. J. App. Phys., 50(11S), 11RD01, 2011.
  • [32] T. Tanaka, M. Matsuda, K. Nakao, Y. Katayama, D. Kaneko, S. Hara, et al. “Measurement of surface tension of liquid Ga-base alloys by a sessile drop method,” Z Metallkd., 92(11), 1242-1246, 2001.
  • [33] W. Gąsior, “Viscosity modeling of binary alloys, Comparative studies,” Calphad., 44, 119-128, 2014.
  • [34] A. Miedema, R. Boom, F. De Boer, “On the heat of formation of solid alloys,” J. Less Comm. Metals., 41(2), 283-298, 1975.
  • [35] Matlab (2020) V, February 01.2020, License number: 161051.
  • [36] T.S. Ree, T. Ree, H. Eyring “Significant structure theory of transport phenomena,” J. Phys. Chem., 68(11), 3262-3267, 1964.
  • [37] W.C Lu, M.S Jhon, T. Ree, H. Eyring, “Significant structure theory applied to surface tension,” J. Chem. Phys., 46(3), 1075-1081, 1967.
  • [38] G. Kaptay “A unified equation for the viscosity of pure liquid metals,” Z. Metallkd., 96(1), 24-31, 2005.
  • [39] N. Zhao, X. Pan, D. Yu, H. Ma, L. Wang, “Viscosity and surface tension of liquid Sn-Cu lead-free solders,” J Electron Mater., 38(6), 828-833, 2009.
  • [40] R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K Kelley, Selected values of the thermodynamic properties of binary alloys, DTIC Document, 1973.
  • [41] J. Brillo, G. Lauletta, L. Vaianella, E. Arato, D. Giuranno, R. Novakovic, et al. “Surface Tension of Liquid Ag–Cu Binary Alloys,” ISIJ International, 54(9), 2115-2119, 2014.
  • [42] J. Brillo, I. Egry, I. Ho, “Density and thermal expansion of liquid Ag–Cu and Ag–Au alloys.” Int J Thermophys., 27(2), 494-506, 2006.
  • [43] P. Fima, N. Sobczak, “Thermophysical Properties of Ag and Ag–Cu Liquid Alloys at 1098 K to 1573 K,” Int J Thermophys., 31(6), 1165-1174, 2010.
  • [44] A. Bricard, N. Eustathopoulos, J-C Joud, P. Desre, “Surface Tension of Liquid Ag-Cu Alloys by the Sessile-Drop Method,” Compt Rend. 276 (22), 1613-1616, 1973.
  • [45] E. Gebhardt, G. Worwag, “Die innere reibung flussigerlegierungen aus silber-kupfer-gold,” Z Metallkd., 43(4), 106-108, 1952.
  • [46] Z. Moser, W. Gasior, A. Debski, J. Pstrus, “Surdat: Database of physical properties of lead-free solders,” J.Min. Metall. B: Metallurgy, 43(2), 125-130, 2007.
  • [47] B.J. Keene, K. Mills, J. Bryant, E. Hondros, “Effects of interaction between surface active elements on the surface tension of iron,” Canad. Metall. Quar., 21(4), 393-403, 1982.
Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi-Cover
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2006
  • Yayıncı: Süleyman Demirel Üniversitesi Fen-Edebiyat Fakültesi