181Ta(α,xn) Reaksiyonu Tesir Kesitlerinin İncelenmesi

Optiksel model, nükleer reaksiyonları açıklamak için geliştirilen modellerden birisidir. Soğurma etkilerinin var olması halinde elastik saçılmayı genel bir yolla inceleyebilmemizi sağlar. Optiksel model potansiyeli; bileşik ve denge-öncesi nükleer reaksiyonların tesir kesitlerinin açılan reaksiyon kanallarına nasıl dağılacağını belirlediğinden dolayı, nükleeer reaksiyonlar için oldukça önemlidir. Optiksel model potansiyeli ile birlikte; seviye yoğunluğu bilgisi, tesir kesiti, enerji spektrumu ve diğer gözlenebilir nükleer reaksiyon değerlerinin güvenilir teorik analizi için belki de en önemli bileşendir. Bu çalışmada, 181Ta(α,n)184Re, 181Ta(α,2n)183Re, 181Ta(α,3n)182Re ve 181Ta(α,4n)181Re reaksiyon tesir kesitleri farklı seviye yoğunluğu ve optiksel modeller kullanılarak hesaplanmıştır. Hesaplamalarda optiksel modeller için, Watanabe düzeltmeli Koning-Delaroche, McFadden- Satchler, Demetriou-Grama-Goriely ve Avrigeanu modelleri, seviye yoğunluğu modelleri için Sabit Sıcaklık Fermi Gaz, Geri Kaydırmalı Fermi Gaz ve Genelleştirilmiş Süper Akışkan modelleri kullanılmıştır. Tüm hesaplamalar TALYS 1.8 kodu ile gerçekleştirilmiştir. Elde edilen sonuçlar Uluslararası Deneysel Nükleer Reaksiyon Data Merkezi (EXFOR)’dan alınan verilerle karşılaştırılmıştır. Hesaplamaların deneysel verilerle karşılaştırılmasında göreli varyans analizi kullanılmıştır.

Investigation cross sections of 181Ta(α,xn) reaction

Optical model is one of the models developed to explain nuclear reactions. It allows us to investigate the elastic scattering in the presence of absorption effects. The optical model is very important for nuclear reactions, since it defines how the cross sections of compound and the pre-equilibrium nuclear reactions separated to the opened reaction channels. Level density information along with the optical model potential perhaps the most important component for reliable theoretical analysis of the cross section, energy spectrum and other observable nuclear reaction values. In this study, cross section calculations have been done for 181Ta(α,n)184Re, 181Ta(α,2n)183Re, 181Ta(α,3n)182Re ve 181Ta(α,4n)181Re reactions by using different level densities and optical models. In the calculations Watanabe corrected Koning-Delaroche, McFadden- Satchler, Demetriou-Grama-Goriely and Avrigeanu models have been used for optical models while Constant Temperature Fermi Gas, Back-Shifted Fermi Gas and Generalised Superfluid models have been selected for level density models. All calculations have been performed with TALYS 1.8 code. Obtained results have been compared with the data taken from International Experimental Nuclear Reaction Data Center (EXFOR). Relative analysis of variance was used in the comparison of the calculations with the experimental data.

___

  • J. Lilley, “Nükleer Fizik İlkeler ve Uygulamalar,” A. Aydın, İ. H. Sarpün, E. Tel, A. Kaplan, Çeviri Ed. Ankara: Nobel, 2018, pp. 106.
  • B. Canbula, “Bazı tellür izotoplarının nötron yakalama tesir kesiti analizi,” CBÜ F Bil.Dergi, vol. 13, no. 2, pp. 445-455, 2017.
  • A. Kaplan, E. Tel, A. Aydin, “The Equilibrium and Pre-equilibrium Neutron Emission Spectra of Some Structural Fusion Materials for (n,xn) Reactions up to 16 MeV Energy” Phys. Atom Nucl. vol. 72, pp. 903-910, 2009.
  • H. A. Yalım, A. Aydin, İ. H. Sarpün, R. Ünal, B. Oruncak, A. Kaplan, E. Tel, “Investigation of Nucleon Mean Free Path Dependence in Tritium Emission Spectra Produced by Proton Induced Reactions at 62 MeV”, J. Fusion Energ. vol. 29, pp. 55-61, 2010.
  • A. Aydın, E. Tel, H. Pekdoğan, A. Kaplan, “Nuclear Model Calculations on the Production of 125,123Xe and 133,131,129,128Ba Radioisotopes”, Phys. Atom Nucl. vol. 75, pp. 310-314, 2012.
  • A. Aydın and A. Kaplan, “The Calculations of (p,xn) Reactions Cross Sections of 203,205Tl Target Nuclei by Using Proton Cyclotron,” Süleyman Demirel University, Arts and Sciences Faculty, Journal of Science (e-journal),vol. 2, pp. 152-159, 2007.
  • A. Kaplan, M. Şekerci, V. Çapalı, H. Özdoğan, “Photon Induced Reaction Cross Section Calculations of Several Structural Fusion Materials,” J. Fusion Energ. vol. 36, pp. 213-217, 2017.
  • A. Kaplan, M. Şekerci, V. Çapalı, H. Özdoğan, “Computations of (α,xn) Reaction Cross-Section for 107,109Ag Coated Materials with Possible Application in Accelerators and Nuclear Systems,” J. Fusion Energ. vol. 35, pp. 715-723, 2016.
  • A. Aydın, G. Türeci, E. Tel, A. Kaplan, “Investigation of Deuteron Emission Spectra at 62 MeV Proton Incident Energy,” J. Fusion Energ. vol. 29, pp. 327-331, 2010.
  • A. Kaplan, A. Aydın, E. Tel, B. Şarer, “Equilibrium and Pre-Equilibrium Emissions In Proton - Induced Reactions on 203,205Tl,” Pramana-J. Phys. vol. 72, pp. 343-353, 2009.
  • E. Tel, E. G. Aydın, A. Kaplan, A. Aydın, “New calculations of cyclotron production cross sections of some positron emitting radioisotopes in proton induced reactions,” Indian J. Phys. vol. 83, pp. 193-212, 2009.
  • A. Kaplan, E. Tel, A. Aydın, “The Equilibrium and Pre-equilibrium Neutron Emission Spectra of Some Structural Fusion Materials for (n,xn) Reactions up to 16 MeV Energy,” Phys. Atom Nucl. vol. 72, pp. 903-910, 2009.
  • A. Kaplan, E. Tel, E. G. Aydın, A. Aydın, M. Yılmaz, “Spallation neutron emission spectra in medium and heavy target nuclei by a proton beam up to 140 MeV energy,” Appl. Radiat. Isotopes vol. 67, pp. 570-576, 2009.
  • E. G. Aydın, E. Tel, A. Kaplan, A. Aydın, “Equilibrium and Pre-equilibrium Calculations of Neutron Production In Medium-Heavy Targets Irradiated By Protons Up to 100 MeV,” Ann. Nucl. Energy vol. 35, pp. 2306-2312, 2008.
  • H. Özdoğan, M. Şekerci, A. Kaplan, “Füzyon Reaktörü Yapısal Malzemelerinde Kullanılan Bazı Elementler için Proton Girişli Reaksiyonlarda 3He Yayınlanma Spektrumlarının İncelenmesi,” Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, vol. 13, pp. 12-18, 2018.
  • A. Aydın, İ. H. Sarpün, A. Kaplan, E. Tel, “Calculations of Double–Differential Deuteron Emission Cross Sections at 62 MeV Proton Induced Reactions,” J. Fusion Energ. vol. 32, pp. 378-381, 2013.
  • A. Kaplan, H. Özdoğan, A. Aydın, E. Tel, “Deuteron-Induced Cross Section Calculations of Some Structural Fusion Materials,” J. Fusion Energ. vol. 32, pp. 97-102, 2013.
  • A. Aydın, İ. H. Sarpün, A. Kaplan, “Calculations of Double-Differential Triton Emission Cross Sections at 62-MeV Proton-Induced Reactions”, Phys. Atom Nucl. 77 (3), 321-324, 2014.
  • H. Özdoğan, M. Şekerci, İ. H. Sarpün, A. Kaplan, 2018, “Investigation of level density parameter effects on (p,n) and (p,2n) reaction cross–sections for the fusion structural materials 48Ti, 63Cu and 90Zr,” Appl. Radiat. Isot. 140, 29-34.
  • A. Aydin, H. Pekdogan, A. Kaplan, İ. H. Sarpün, E. Tel, B. Demir, “Comparison of Level Density Models for the 60,61,62,64Ni(p,n) Reactions of Structural Fusion Material Nickel from Threshold to 30 MeV,” J. Fusion Energ. vol. 34, pp. 1105-1108, 2015.
  • İ. H. Sarpün, A. Aydın, A. Kaplan, H. Koca, E. Tel, “Comparison of Fission Barrier and Level Density Models in (a,f) Reactions of Some Heavy Nuclei”, Ann. Nucl. Energy vol. 70, pp. 175-179, 2014.
  • EXFOR: Experimental Nuclear Reaction Data. Database Version of 2018-01-09, https://www-nds.iaea.org/exfor/exfor.htm. Erişim Tarihi: 09.07.2018
  • A. J. Koning, S. Hilaire and S. Goriely (2015) TALYS–1.8 A Nuclear Reaction Program, http://www.talys.eu/fileadmin/talys/user/docs/talys1.8.pdf
  • N. V. Kurenkovb, V. P. Luneva, Yu. N. Shubina, “Evaluation of calculation methods for excitation functions for production of radioisotopes of iodine, thallium and other elements,” Appl. Radiat. Isot. vol. 50, pp. 541-549, 1999.
  • J. J. Griffin, “Statistical model of intermediate structure,” Phys. Rev. Lett. vol. 17, pp. 478-481, 1966.
  • S. Watanabe, “High energy scattering of deuterons by complex nuclei,” Nuclear Physics, vol. 8, pp. 484-492, 1958.
  • L. McFadden ve G. R. Satchler, “Optical model analysis of the scattering of 24,7 MeV alpha particles,” Nuclear Physics, vol. 84, pp. 177-200, 1966.
  • P. Demetriou, C. Grama, S. Goriely, “Improved global α-optical model potentials at low energies,” Nuclear Physics A, vol. 707, pp. 253-276, 2002.
  • M. Avrigeanu ve V. Avrigeanu, “α-particle nuclear surface absorption below the Coulomb barrier in heavy nuclei,” Physical Review C vol. 82, pp. 1-7, 2010.
  • H. A. Bethe, “Nuclear Physics B. Nuclear Dynamics,” Theoretical. Reviews of Modern Physics, vol. 9, pp. 69-244, 1937.
  • A. Gilbert, A. G. W. Cameron, “A composite nuclear level density formula with shell corrections,” Canadian Journal of Physics, vol. 43, pp. 1446-1496, 1965.
  • A. J. Koning, S. Hilarie, S. Goriely, “Global and Local Level Density Models,” Nuclear Physics A, vol. 810, pp. 13-76, 2008.
  • N. V. Kurenkovb, V. P. Luneva, Yu. N. Shubina, “Evaluation of calculation methods for excitation functions for production of radioisotopes of iodine, thallium and other elements,” Appl. Radiat. Isot. vol. 50, pp. 541-549, 1999.
  • A. Kaplan, “Investigation of Neutron-Production Cross Sections of the Structural Fusion Material 181Ta for (α,xn) Reactions up to 150 MeV Energy,” J. Fusion Energ. vol. 32, pp. 382-388, 2013.
Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi-Cover
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2006
  • Yayıncı: Süleyman Demirel Üniversitesi Fen-Edebiyat Fakültesi