Yağ Gülü (Rosa damascena Mill.)’nün Mikroçoğaltımında En Uygun Sürgün ve Köklenme Ortamlarının Belirlenmesi

Bu araştırma, ekonomik değerinin yanı sıra ülkemiz açısından bir prestij bitkisi olması nedeniyle de büyük önem taşıyan yağ gülü (Rosa damascena) için in vitro koşullarda etkili ve uygun maliyetli sürgün çoğaltma ve köklenme protokolü geliştirmek amacıyla gerçekleştirilmiştir. Bu araştırmada eksplant kaynağı olarak yağ gülü bitkilerine ait tek gözlü boğum parçaları kullanılmıştır. Sıvı modifiye MS ortamına ilave edilen benziladenin (BA) (1.0, 1.5 ve 2.0 mg/l)’nin 0 ve 0.1 mg/l konsantrasyonlarındaki naftalin asetik asit (NAA) ile yapmış olduğu 6 farklı kombinasyonunun, boğum eksplantlarından elde edilen in vitro sürgünlerin gelişimi üzerine olan etkileri belirlenmiştir. Yapılan üç alt kültür sonrasında elde edilen sürgünler, 2 mg/l indol bütirik asit (IBA), 30 g/l sakkaroz ve 162 mg/l floroglusinol (FG) içeren ½ MS ortamında 7 gün karanlıkta kültüre alınmalarının ardından, köklenme performanslarını değerlendirmek üzere, sıvı ½ MS ve sıvı ½ modifiye MS ortamlarında kültüre alınmışlardır. Araştırma sonucunda, sürgün çoğalması ve büyümesi için 2 mg/l BA içeren sıvı modifiye MS ortamının; sürgünlerin köklendirilmesi için de 7 gün süreyle 2 mg/l indol bütirik asit (IBA), 30 g/l sakkaroz ve 162 mg/l FG içeren MS ortamında tutulmalarının ardından, sadece 30 g/l sakkaroz içeren sıvı ½ MS ortamlarına transfer edilmeleri ile en başarılı sonuçların elde edildiği belirlenmiştir. Araştırmada ayrıca düşük maliyet ve yüksek başarı ile Rosa damascena türü için sıvı ortamların etkin bir şekilde kullanılabileceği de belirlenmiştir.

Determination of the Most Appropriate Shoot and Rooting Media in the Micro-propagation of Oil Rose (Rosa damascena)

This study was carried to improve an influential and cost-effective shoot proliferation and rooting protocol for oil rose (Rosa damascena) having great importance of its economic value as well as its prestige plant for our country. In this study, single nodal pieces belonging to oil rose plants were used as explant sources. It was determined that the effects of liquid modified Murashige and Skoog (MS) media containing 6 different combinations of benzyladenine (BA) (1.0, 1.5 and 2.0 mg/l) and naphthalene acetic acid (NAA) (0 and 0.1 mg/l) on the development of shoots obtained from nodal explants. After three subculture cycles, to evaluate rooting performance of shoots, they were cultured in ½ MS medium containing 2 mg/l indole butyric acid (IBA), 30 g/l sucrose and 162 mg/l phloroglucinol (PG) for 7 days in the dark and then transferred to liquid ½ MS and liquid ½ modified MS medium. At the end of the study, the most successful results for shoot proliferation were obtained from the liquid modified MS medium containing 2 mg/l BA. The best treatment for rooting of shoots was MS medium supplemented with 2mg/l indole butyric acid (IBA), 30 g/l sucrose and 162 mg/l PG for 7 days and then transferring the explants to liquid ½ MS medium added only 30 g/l sucrose. In the study, it was also determined that liquid media had significant potential for the propagation of Rosa damascena with low cost and high success.

___

  • [1] Baydar, H., Erbaş, S., Kıneci, S., Kazaz, S., 2007. Yağ Gülü (Rosa damascena Mill.) Damıtma Suyuna Katılan Tween-20’nin Taze ve Fermente Olmuş Çiçeklerin Gül Yağı Verimi ve Kalitesi Üzerine Etkisi. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 2, 15-20.
  • [2] Baydar, H., 2013. Tıbbi, Aromatik ve Keyif Bitkileri Bilimi ve Teknolojisi. Süleyman Demirel Üniversitesi Yayın Evi, 20-50s, Isparta.
  • [3] Khosh-Khui, M., 2014. Biotechnology of Scented Roses: A Review. International Journal of Horticultural Science and Technology, 1, 1-20.
  • [4] Özkan, G., Sağdıç, O., Göktürk Baydar, N., Baydar, H., 2004. Antioxidant and Antibacterial Activities of Rosa damascena flower extracts. Food Science and Technology International, 10(4), 277-281.
  • [5] Mileva, M., Krumova, E., Miteva-Staleva, J., Kostadinova, N., Dobreva, A., Galabov, A.S., 2014. Chemıcal Compounds, In Vıtro Antıoxıdant and Antifungal Activıties of Some Plant Essentıal Oils Belongıng to Rosaceae Famıly. Comptes Rendus De L Academıe Bulgare Des Scıences, 67, 1363-1368.
  • [6] Horn, W.A.H., 1992. Micropropagation of Rose (Rosa L.). In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, Vol. 20, High- Tech and Micropropagation IV (pp. 320-342). Springer, Germany.
  • [7] Pati, P. K., Sharma, M., Sood, A., Ahuja, P. S., 2005. Micropropagation of Rosa damascena and R. bourboniana in Liquid Cultures. In Liquid Culture Systems for in Vitro Plant Propagation, Springer, 373-385.
  • [8] Noodezh, H. M., Moieni, A., Baghizadeh, A., 2012. In Vitro Propagation of the Damask Rose (Rosa damascena Mill.). In Vitro Cellular and Developmental Biology-Plant, 48, 530-538.
  • [9] Murashige, T., Skoog, F., 1962. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15, 473-497.
  • [10] Nikbakht, A., Kafi, M., Mirmasoudi, M., Babalar, M., 2005. Micropropagation of Damask Rose (Rosa damascena Mill.) cvs. Azaran and Ghamsar. International Journal of Agricultural and Biological Engineering, 7, 535-538.
  • [11] Jabbarzadeh, Z., Khosh-Khui, M., 2005. Factors Affecting Tissue Culture of Damask Rose (Rosa damascena Mill.). Scientia Horticulturae, 105, 475-482.
  • [12] Salekjalali, M., 2012. Phloroglucinol, BAP and NAA Enhance Axillary Shoot Proliferation and other Growth Indicators In vitro Culture of Damask Rose (Rosa damascena Mill.). American-Eurasian Journal of Agricultural and Environmental Sciences, 12, 960-966.
  • [13] Gülşen, Y., Ağaoğlu, Y.S., Ellialtıoğlu, Ş., 1994. Isparta ve yöresinde yetiştirilen yağ gülünün (Rosa damascena Mill.) doku kültürü yoluyla çoğaltılması. TÜBİTAK GÜLAR 7 no’lu proje sonuç raporu. 45 s.
  • [14] Podwyszynska, M., Olszewski, T., 1995. Influence of Gelling Agents on Shoot Multiplication and the Uptake of Macroelements by In Vitro Culture of Rose, Cordyline and Homalomena. Scientia Horticulturae, 64,77–84.
  • [15] Van der Salm, C., Van der Toon, C., Hanisch ten Cate, L., Dubois, D., Vries, H., 1994. Importance of the Iron Chelate Formula for Micropropagation of Rosa hybrida L. ‘Moneyway’. Plant Cell, Tissue and Organ Culture, 37, 73-77.
  • [16] Alsemaan, T., Albatal, N., Almaarri, K., 2011. Micropropagation of Damask Rose (Rosa damascena). Arab Universities Journal of Agricultural Sciences, 19, 117-127.
  • [17] Attia, A. O., Dessoky, D.S., El-Tarras, A.E., 2012. In Vitro Propagation of Rosa hybrida L. cv. Al-Taif Rose Plant. African Journal of Biotechnology, 11(48), 10888-10893.
  • [18] Carelli, B.P., Echeverrigaray, S., 2002. An Improved System for the In Vitro Ppropagation of Rose Cultivars. Scientia Horticulturae, 92, 69–74.
  • [19] Khosh-Khui, M., Sink, K.C., 1982. Micropropagation of New and Old World Rose Species. Journal of Horticultural Sciences, 57, 315-319.
  • [20] Mamaghani, B. A., Ghorbanli, M., Assareh, M. H., Zare, A. G., 2010. In vitro Propagation of Three Damask Roses Accessions. Iranian Journal of Plant Physiology, 1, 85-94.
  • [21] Campos, P.S., Pais, M.S.S., 1990. Mass Propagation of the Dwarf Rose Cultivar Rosamini. Scientia Horticulturae, 43, 321–30.
  • [22] Chu, C.Y., Knight, S.L., Smith, M.A.L., 1993. Effect of Liquid Culture on the Growth and Development of Miniature Rose (Rosa chinensis Jacq. ‘Minima’). Plant Cell, Tissue and Organ Culture, 32, 329-334.
  • [23] Kirichenko, E.B., Kuz'-Mina, T.A., Kataeva, N.V., 1991. Factors in Optimizing the Multiplication of Ornamental and Essential Oil Roses In Vitro. Byulleten'-Glavnogo-Botanicheskogo-Sada, 159, 61-67.
  • [24] Saffari, V.R., Sharifi-Sirchi, G.R., Torabi-Sirchi, M.H., 2011. Enhancing Rooting Consistency in Rosa damascena Scions. African Journal of Biotechnology, 10, 16495-16500.
  • [25] Oliveria, A.J.B., Carvalho, V.M., Ferreira, A., Sato F.Y., Machado, M.F.P., 2003. In Vitro Multiplication of Tabernaemontana fuchsiaefolia L. (Apocynaceae). Revista Árvore, 27, 421-425.
  • [26] Bhot, M., S. Naphade, J. Varghese and N. Chandra, 2010. In Vitro Culture Studies in Three Varieties of Codiaeum Variegatum (L.) Blume Using Node Explants from Field Growth Plants. Journal of Cell and Tissue Research, 10, 2439-2444.
  • [27] Gaspar, T., 1991. Vitrification in Micropropagation. In: Bajaj Y.P.S. (ed.), Springer, Berlin.
  • [28] Modgil, M., Sharma, D.R., Bhardwaj, S.V., 1999. Micropropagtion of Apple cv. Tydeman's Early Worcester. Scientia Horticulturae, 81, 179-188.
  • [29] Wang, Q., 1991. Factors Affecting Rooting of Microcuttings of the Pear Rootstock BP10030. Scientia Horticulturae, 45, 209-213.
  • [30] Kim, J.A., Lee, J.M., Shin, D.B., Lee, N.H., 2004. The Antioxidant Activity and Tyrosinase Inhibitory Activity of Phlorotannins in Ecklonia cava. Food Science and Biotechnology, 13, 476-480.
  • [31] Ramesh, K., Dohare, S.R., Chopra, H.R., Kumar, R., 1993. In Vitro Effect of Growth Regulators and Media State on Seed Germination and Shoot Proliferation of Rose (Rosa hybrida). Punjab Horticultural Journal, 33, 142–146.
  • [32] Debergh, P.C., 1983. Effects of Agar Brand and Concentration on the Tissue Culture Medium. Physiologia Plantarum, 59, 270-276.
  • [33] Ziv, M., Halevy, A.H., 1983. Control of Oxidative Browning and In Vitro Propagation of Strelitzia reginae. Horticultural Sciences, 18 (4), 434-436.
  • [34] Ibrahim, A.I., 1994. Effect of Gelling Agent and Activated Charcoal on the Growth and Development of Cordyline terminalis Cultured In Vitro. In: Proceedings of the First Conference of Ornamental Horticulture, 1, 55-67 pp.
  • [35] Ghashghaie, J., Brenckmann, F., Saagier, B., 1991. Effects of Agar Concentration on Water Status and Growth of Rose Plants Cultured in Vitro. Physiologia Plantarum, 82, 73-78.