Si Tel Dalga Kılavuzundan Plazmonik Yiv Dalga Kılavuzuna Kip Dönü¸sümünde Metal Kalınlığının Etkisi

Bu çalı¸smada 1550 nm telekom dalga boyunda çalı¸san, Si tel dalga kılavuzundan plazmonik yiv dalga kılavuzuna kip dönüştürücülerini inceledik. Söz konusu yapılar gittikçe incelen bir geometriye sahiptir. 30-250 nm arasındaki metal (Au) kalınlıkları için %90’dan yüksek güç iletimine sahip en uygun boyutları sunduk. Plazmonik yiv dalga kılavuzuna eşlenen güç ile iletilen toplam gücün nasıl birbirinden ayrılabilece˘gini ayrıntılarıyla açıkladık. İncelememiz yiv dalga kılavuzu kiplerinin uygun bir iç çarpım tanımı sonucu birbirlerine dikgen olmasına dayanmaktadır. Sonuçlarımız plazmonik modülatörlerin bağlanma kaybı ve bit hata oranlarının azaltılmasına katkı sunacaktır.

The Effect of Metal Thickness on Si Wire to Plasmonic Slot Waveguide Mode Conversion

We investigate mode converters for Si wire to plasmonic slot waveguides at1550 nm telecom wavelength. The structures are based on a taper geometry. We provideoptimal dimensions with more than 90% power transmission for a range of metal (Au)thicknesses between 30-250 nm. We provide details on how to differentiate between thetotal power and the power in the main mode of the plasmonic slot waveguide. Our analysisis based on the orthogonality of modes of the slot waveguide subject to a suitable innerproduct definition. Our results are relevant for lowering the insertion loss and the bit errorrate of plasmonic modulators.

___

  • [1] Yamada, K. 2011. Silicon PhotonicWireWaveguides: Fundamentals and Applications. Silicon Photonics II: Components and Integration, Springer, Berlin, ss 1–29.
  • [2] Thomson, D., Zilkie, A., Bowers, J. E., Komljenovic, T., Reed, G. T., Vivien, L., Marris-Morini, D., Cassan, E., Virot, L., Fédéli, J.-M., Hartmann, J.-M., Schmid, J. H., Xu, D.-X., Boeuf, F., O’Brien, P., Mashanovich, G. Z., Nedeljkovic, M. 2016. Roadmap on silicon photonics. Journal of Optics, 18(2016), 073003.
  • [3] Melikyan, A., Alloatti, L., Muslija, A., Hillerkuss, D., Schindler, P.C., Li, J., Palmer, R., Korn, D., Muehlbrandt, S., Thourhout, D. V., Chen, B., Dinu, R., Sommer, M., Koos, C., Kohl, M., Freude, W., Leuthold J. 2014. High-speed plasmonic phase modulators. Nature Photonics, 8(2014), 229–233.
  • [4] Haffner, C., Heni, W., Fedoryshyn, Y., Josten, A., Baeuerle, B., Hoessbacher, C., Salamin, Y., Koch, U., Dordevic, N., Mousel, P., Bonjour, R., Emboras, A., Hillerkuss, D., Leuchtmann, P., Elder, D. L., Dalton, L. R., Hafner, C., Leuthold, J. 2016. Plasmonic organic hybrid modulators—scaling highest speed photonics to the microscale. Proceedings of the IEEE, 104(2016), 2362–2379.
  • [5] Hoessbacher, C., Josten, A., Baeuerle, B., Fedoryshyn, Y., Hettrich, H., Salamin, Y., Heni, W., Haffner, C., Kaiser, C., Schmid, R., Elder, D. L., Hillerkuss, D., Möller, M., Dalton, L. R., Leuthold, J. 2017. Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ. Optics Express, 25(2017), 1762–1768.
  • [6] Tian, J., Yu, S., Yan, W., Qiu, M. 2009. Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface. Applied Physics Letters, 95(2009), 013504.
  • [7] Han, Z., Elezzabi, A. Y., Van, V. 2010. Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform. Optics Letters, 35(2010), 502–504.
  • [8] Chen, C.-T., Xu, X., Hosseini, A., Pan, Z., Subbaraman, H., Zhang, X., Chen, R. T. 2015. Design of highly efficient hybrid Si-Au taper for dielectric strip waveguide to plasmonic slot waveguide mode con-verter. Journal of Lightwave Technology, 33(2015), 535–540.
  • [9] Zhu, B. Q., Tsang, H. K. 2016. High coupling efficiency silicon waveguide to metal–insulator–metal waveguide mode converter. Journal of Lightwave Technology, 34(2016), 2467–2472.
  • [10] Ono, M., Taniyama, H., Xu, H., Tsunekawa, M., Kuramochi, E., Nozaki, K., Notomi, M. 2016. Deep-subwavelength plasmonic mode converter with large size reduction for Si-wire waveguide. Optica, 3(2016), 999–1005.
  • [11] Veronis, G., Fan, S. H. 2007. Modes of subwavelength plasmonic slot waveguides. Journal of Lightwave Technology, 25(2007), 2511–2521.
  • [12] Kewes, G., Schoengen, M., Neitzke, O., Lombardi, P., Schönfeld, R.-S., Mazzamuto, G., Schell, A. W., Probst, J., Wolters, J., Löchel, B., Toninelli, C., Benson, O. 2016. A realistic fabrication and design concept for quantum gates based on single emitters integrated in plasmonic-dielectric waveguide structures. Scientific Reports, 6(2016), 28877.
  • [13] Palik, E. D. 1985. Handbook of optical constants of solids. Vol. 1. Academic Press, London, 804s.
  • [14] Kitamura, R., Pilon, L., Jonasz, M. 2007. Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Applied Optics, 46(2007), 8118–8133.
  • [15] McPeak, K. M., Jayanti, S. V., Kress, S. J. P., Meyer, S., Iotti, S., Rossinelli, A., Norris, D. J. 2015. Plasmonic films can easily be better: Rules and recipes. ACS Photonics, 2(2015), 326–333.
  • [16] Yang, J., Hugonin, J.-P., Lalanne, P. 2016. Near-to-far field transformations for radiative and guided waves. ACS Photonics, 3(2016), 395–402.
  • [17] Ji, X., Barbosa, F. A. S., Roberts, S. P., Dutt, A., Cardenas, J., Okawachi, Y., Bryant, A., Gaeta, A. L., Lipson, M. 2017. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 4(2017), 619–624.
  • [18] Veronis G., Fan, S. 2007. Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides. Optics Express, 15(2007), 1211–1221.