Sentetik Atıksuda Porphyridium cruentum CCALA 415'den Fikoeritrin ve Fikosiyanin Üretiminin Arttırılması: Mikroalglere Teorik Metotların Uygulanması

Fikoeritrin (FE) ve fikosiyanin (FS) floresan pigmentlerdir. Bu pigmentler sanayide boyar madde olarak kullanılırlar. Bu çalışmada, evsel atıksuyu, dalga boyu ve salisilik asidin çeşitli konsantrasyonlarında büyütülen Porphyridium cruentum’dan üretildi. FE ve FS konsantrasyonu Cevap Yüzey Metodu-Merkezi Tümleşik Tasarımı (CYM-MTT), regresyon analizi ve rstool modeller aracılığı ile incelendi. Cevap Yüzey Metodu ile tahmin edilen maksimum FE konsantrasyonu, % 50 atıksu, 510 nm dalga boyunda ve 10 µM salisilik asit konsantrasyonunda 29,5 mg/g biyokütle idi. Diğer taraftan, Cevap Yüzey Metodu ile tahmin edilen maksimum FS konsantrasyonu, % 50 atıksu, 680 nm dalga boyunda ve 40 µM salisilik asit konsantrasyonunda 6,9 mg/g biyokütle idi. ANOVA sonuçlarına göre, fikosiyanin konsatrasyonu için üç değişkenin kare etkileri önemli bulunurken, fikoeritrinin konsantrasyonunda atık su ve salisilik asit değişkenleri önemli bulunmuştur. Buna ek olarak, rstool aracılığı ile FE ve FS konsantrasyonları % 50 atıksu, 512,5 nm dalga boyunda ve 47,0833 µM salisilik asit konsantrasyonunda sırası ile 27,648 ve 5,7104 mg/g biyokütle idi. Sonuç olarak, atıksu, dalga boyu ve salisilik asit gibi değişkenler Cevap Yüzey Metodu-Merkezi Tümleşik Tasarım (CYM-MTT) ve rstool modeller ile en yüksek FE ve FS konsantrasyonu için kullanılabilir. Bu değişkenler, iki pigmentin sanayide üretimine katkıda bulunabilir.

Enhancing Phycoerythrin and Phycocyanin Production from Porphyridium cruentum CCALA 415 in Synthetic Wastewater: The Application of Theoretical Methods on Microalgae

Phycoerythrin (PE) and phycocyanin (PC) are florescent pigments. They have the colorant role in the industry. In this study, production of PE and PC from Porphyridium cruentum were investigated at the various conditions such as different concentrations of municipal wastewater, wavelengths and salicylic acid using Response Surface Methodology-Central Composite Design (RSM-CCD), regression analysis and rstool models. The maximum RSM predicted PE concentration was 29.5 mg/g biomass at 50 % of wastewater, 510 nm of wavelength and 10 µM of salicylic acid. On the other hand, maximum RSM predicted PC concentration was 6.9 mg/g biomass at 50% of wastewater, 680 nm and 40 µM of salicylic acid. According to the ANOVA results, the square effects of the three variables (X1, X2 and X3) were found to be significant for the phycocyanin concentration, while the wastewater and salicylic acid variables (X1 and X3) were found to be important in the Phycoerythrin concentration. In addition to this, the highest PE and PC concentrations were 27.648 and 5.7104 mg/g biomass, respectively, for 50 % of wastewater, 512.5 nm and 47.0833 µM of salicylic acid according to rstool model. In conclusion, the variables such as wastewater, wavelength and salicylic acid can be used for the highest PE and PC concentration by means of RSM-CCD and rstool models and these variables may contribute to the industrial production of the two pigments.

___

  • [1] Balti, R., Le Balc’h, R., Brodu, N., Gilbert, M., Le Gouic, B., Le Gall, S., Sinquin, C., Massé, A. 2018. Concentration and Purification of Porphyridium cruentum Exopolysaccharides by Membrane filtration at Various Cross- flow Velocities. Process Biochemistry, 74, 175-184.
  • [2] Bernaerts, T. M. M., Kyomugasho, C., Looveren, N. V., Gheysen, L., Foubert, I., Hendrickx, M. E., Loey, A.M. V. 2018. Molecular and Rheological Characterization of Different Cell Wall Fractions of Porphyridium cruentum. Carbohydrate Polymers, 195, 542-550.
  • [3] Aron, N. S. M., Khoo K. S., Chew, W. K., Veeramuthu, A., Chang, J., Show, P. L. 2020. Microalgae Cultivation in Wastewater and Potential Processing Strategies Using Solvent and Membrane Separation Technologies. Journal of Water Process Engineering, 101701.
  • [4] Pagels, F., Guedes, A.C., Amaro, H.M., Kijjoa, A. 2019. Phycobiliproteins from Cyanobacteria: Chemistry and Biotechnological Applications. Biotechnology Advances, 37, 422-443.
  • [5] Khatoon, H., Kok, L., Abdu, N., Mian, S., Begum, H., Banerjee, S., Endut, A. 2018. Effects of Different Light Source and Media on Growth and Production of Phycobiliprotein from Freshwater Cyanobacteria. Bioresource Technology, 249, 652-658.
  • [6] Tran, T., Lafarge, C., Winckler, P., Pradelles, R., Cayot, N., Loupiac, C. 2019. Ex situ and In situ Investigation of Protein / Exopolysaccharide Complex in Porphyridium cruentum Biomass Resuspension. Algal Research, 41, 101544.
  • [7] Hsieh-lo, M., Castillo, G., Ochoa-becerra, M.A., Mojica, L. 2019. Phycocyanin and Phycoerythrin: Strategies to Improve Production Yield and Chemical Stability. Algal Research, 42, 101600.
  • [8] Renugadevi, K., Nachiyar, C.V., Sowmiya, P., Sunkar, S. 2018. Antioxidant Activity of Phycocyanin Pigment Extracted from Marine Filamentous Cyanobacteria Geitlerinema sp TRV57. Biocatalysis and Agricultural Biotechnology, 16, 237-242.
  • [9] Lauceri, R., Chini, G., Maserti, B., Torzillo, G. 2018. Purification of Phycocyanin from Arthrospira platensis by Hydrophobic Interaction Membrane Chromatography. Algal Research, 35, 333-340.
  • [10] Falkeborg, M. F., Roda-serrat, M.C., Burnaes, K. L., Nielsen, A. L. D. 2018. Stabilising Phycocyanin by Anionic Micelles. Food Chemistry, 239, 771-780.
  • [11] Arulselvan, P., Fard, M.T., Tan, W.S., Gothai, S., Fakurazi, S., Norhaizan, M.E., Kumar, S.S. 2016. Role of Antioxidants and Natural Products in Inflammation. Oxidative Medicine and Cellular Longevity, 5276130, 1-15.
  • [12] Kadir, W. N. A., Lam, M. K., Uemura, Y., Lim, J. W., Lee, K. T. 2018. Harvesting and Pre-treatment of Microalgae Cultivated in Wastewater for Biodiesel Production : A review. Energy Conversion and Management, 171, 1416-1429.
  • [13] Hena, S., Gutierrez, L., Crou, J. 2021. Removal of Pharmaceutical and Personal Care Products (PPCPs) from Wastewater Using Microalgae: A review. Journal of Hazardous Materials, 403, 124041.
  • [14] Sher, F., Hanif, K., Rafey, A., Khalid, U., Zafar, A., Ameen, M., Lima, E.C. 2021. Removal of Micropollutants from Municipal Wastewater Using Different Types of Activated Carbons. Journal of Environmental Management, 278, 111302.
  • [15] Úbeda, B., Gálvez, J.Á., Michel, M., Bartual, A. 2017. Microalgae Cultivation in Urban Wastewater : Coelastrum cf . pseudomicroporum as a Novel Carotenoid Source and a Potential Microalgae Harvesting Tool. Bioresource Technology, 228, 210-217.
  • [16] Gupta, S., Pawar, S.B., Pandey, R.A. 2019. Current Practices and Challenges in Using Microalgae for Treatment of Nutrient Rich Wastewater from Agro-based Industries. Science of the Total Environment, 687, 1107-1126.
  • [17] Huang, G., Chen, F., Wei, D., Zhang, X., Chen, G. 2010. Biodiesel Production by Microalgal Biotechnology. Applied Energy, 87, 38-46.
  • [18] Suparmaniam, U., Kee, M., Uemura, Y., Wei, J., Teong, K., Hoong, S. 2019. Insights into The Microalgae Cultivation Technology and Harvesting Process for Biofuel Production: A review. Renewable and Sustainable Energy Reviews, 115, 109361.
  • [19] Lan, J.C., Raman, K., Huang, C., Chang, C. 2013. The Impact of Monochromatic Blue and Red LED Light upon Performance of Photo Microbial Fuel Cells (PMFCs) using Chlamydomonas reinhardtii Transformation F5 as Biocatalyst. Biochemical Engineering Journal, 78, 39-43.
  • [20] Iasimone, F., Panico, A., Felice, V. De, Fantasma, F., Iorizzi, M., Pirozzi, F. 2018. Effect of Light Intensity and Nutrients Supply on Microalgae Cultivated in Urban Wastewater: Biomass Production, Lipids Accumulation and Settle Ability Characteristics. Journal of Environmental Management, 223, 1078-1085.
  • [21] He, Q., Yang, H., Wu, L., Hu, C. 2015. Effect of Light Intensity on Physiological Changes, Carbon Allocation and Neutral Lipid Accumulation in Oleaginous Microalgae. Bioresource Technology, 191, 219-228.
  • [22] Bazdar, E., Roshandel, R., Yaghmaei, S., Mahdi, M. 2018. The Effect of Different Light Intensities and Light/dark Regimes on The Performance of Photosynthetic Microalgae Microbial Fuel Cell. Bioresource Technology, 261, 350-360.
  • [23] Raj, J. V. A., Bharathiraja, B., Vijayakumar, B., Arokiyaraj, S., Iyyappan, J. 2019. Biodiesel Production from Microalgae Nannochloropsis oculata Using Heterogeneous Poly Ethylene Glycol (PEG) Encapsulated ZnOMn2+ Nanocatalyst. Bioresource Technology, 282, 348-352.
  • [24] Lu, D., Liu, X., Apul, O.G., Zhang, L., Ryan, D.K., Zhang, X. 2019. Optimization of Biomethane Production from Anaerobic Co-digestion of Microalgae and Septic Tank Sludge. Biomass and Bioenergy, 127, 105266.
  • [25] Zou, X., Xu, K., Wen, H., Xue, Y., Zhao, S., Xie, W. 2019. A novel method to Recover Microalgae by Compound Buoyant-bead Flotation. Sep. Separation and Purification Technology, 211, 658-666.
  • [26] Onumaegbu, C., Alaswad, A., Rodriguez, C., Olabi, A. 2019. Modelling and Optimization of Wet Microalgae Scenedesmus quadricauda Lipid Extraction Using Microwave Pre-treatment Method and Response Surface Methodology. Renewable Energy, 132, 1323-1331.
  • [27] Andersen, R. A. 2005. Algal Culturing Techniques. 1st Edition. Elsevier Academic press, USA, 487s.
  • [28] OECD, 2010. OECD Guidelines for the Testing of Chemicals (Technical Report 209). Activated Sludge, Respiration Inhibition Test (Carbon and Ammonium Oxidation). Guideline 16. https://www.oecdilibrary.org/content/publication/9789264070080-en (Access Date: 05.05.2020).
  • [29] Zouboulis, A. I., Gkotsis, P. K., Zamboulis, D. X., Mitrakas, M. G. 2017. Application of powdered activated carbon (PAC) for membrane fouling control in a pilot-scale MBR system. Water Science and Technology, 75(10), 2350-2357.
  • [30] Onay, M. 2018. Bioethanol production via different saccharification strategies from H. tetrachotoma ME03 grown at various concentrations of municipal wastewater in a flat-photobioreactor. Fuel, 239, 1315-1323.
  • [31] Coward, T., Fuentes-grünewald, C., Silkina, A., Oatley-radcliffe, D.L., Llewellyn, G., Lovitt, R.W. 2016. Utilising Light-emitting Diodes of Specific Narrow Wavelengths for the Optimization and Co-production of Multiple High-value Compounds in Porphyridium purpureum. Bioresource Technology, 221, 607-615.
  • [32] Beer, S., Eshel, A. 1985. Determining Phycoerythrin and Phycocyanin Concentrations in Aqueous Crude Extracts of Red Algae. Australian Journal of Marine and Freshwater Research, 36(6), 785-792.
  • [33] Mishra, S.K., Shrivastav, A., Maurya, R.R., Patidar, S.K., Haldar, S., Mishra, S. 2012. Effect of Light Quality on the C-phycoerythrin Production in Marine Cyanobacteria Pseudanabaena sp . Isolated from Gujarat Coast , India. Protein Expression and Purification, 81, 5-10.
  • [34] Dumay, J., Clément, N., Morançais, M., Fleurence, J. 2013. Optimization of Hydrolysis Conditions of Palmaria palmata to Enhance R-phycoerythrin Extraction. Bioresource Technology, 131, 21-27.
  • [35] Pereira, T., Barroso, S., Mendes, S., Amaral, R.A., Dias, J.R., Baptista, T., Saraiva, J.A., Alves, N.M., Gil, M.M. 2020. Optimization of Phycobiliprotein Pigments Extraction from Red Algae Gracilaria gracilis for Substitution of Synthetic Food Colorants. Food Chemistry, 321, 126688.
  • [36] Gargouch, N., Karkouch, I., Elleuch, J., Elkahoui, S., Michaud, P., Abdelka, S., Laroche, C., Fendri, I. 2018. Enhanced B-phycoerythrin Production by The Red Microalga Porphyridium marinum: A Powerful Agent in Industrial Applications. International Journal of Biological Macromolecules, 120, 2106-2114.
  • [37] Mittal, R., Raghavarao, K. S. M. S. 2018. Extraction of R-Phycoerythrin from Marine Macro-algae, Gelidium pusillum, Employing Consortia of Enzymes. Algal Research, 34, 1-11.
  • [38] Martínez, J.M., Delso, C., Álvarez, I., Raso, J. 2019. Pulsed Electricfield Permeabilization and Extraction of Phycoerythrin from Porphyridium cruentum. Algal Research, 37, 51-56.
  • [39] Munier, M., Jubeau, S., Wijaya, A., Morançais, M., Dumay, J., Marchal, L., Jaouen, P., Fleurence, J. 2014. Physicochemical Factors Affecting The Stability of Two Pigments: R-phycoerythrin of Grateloupia turuturu and B-phycoerythrin of Porphyridium cruentum. Food Chemistry, 150, 400-407.
  • [40] Zhao, P., Wang, X., Niu, J., He, L., Gu, W., Xie, X., Wu, M., Wang, G. 2020. Agar Extraction and Purification of R-phycoerythrin from Gracilaria tenuistipitata and Subsequent Wastewater Treatment by Ulva prolifera. Algal Research, 47, 101862.
  • [41] Afreen, S., Fatma, T. 2018. Extraction, Purification and Characterization of Phycoerythrin from Michrochaete and Its Biological Activities. Biocatalysis and Agricultural Biotechnology, 13, 84-89.
  • [42] Parys, E., Krupnik, T., Kułak, I., Kania, K., Romanowska, E. 2021. Photosynthesis of The Cyanidioschyzon merolae Cells in Blue, Red, and White Light. Photosynthesis Research, 147, 61-73.
  • [43] Sintra, T.E., Bagagem, S.S., Ghazizadeh, F., Fernandes, A., Martins, M., Macário, I.P.E., Pereira, J.L., Gonçalves, F.J.M. 2021. Sequential Recovery of C-phycocyanin and Chlorophylls from Anabaena cylindrica. Separation and Purification Technology, 255, 117538.
  • [44] Gammoudi, S., Athmouni, K., Nasri, A., Diwani, N., Grati, I., Belhaj, D., Bouaziz-ketata, H., El, A., Ayadi, H. 2019. Optimization, Isolation, Characterization and Hepatoprotective Effect of a Novel Pigment-protein Complex (phycocyanin) Producing Microalga: Phormidium versicolor NCC-466 Using Response Surface Methodology. International Journal of Biological Macromolecules, 137, 647-656.
  • [45] Setyoningrum, T. M., Nur, M. M. A. 2015. Optimization of C-phycocyanin Production from S . platensis Cultivated on Mixotrophic Condition by Using Response Surface Methodology. Biocatalysis and Agricultural Biotechnology, 4, 603-607.
  • [46] Rathnasamy, S. K., Rajendran, D., Balaraman, H. B., Viswanathan, G. 2019. Functional Deep Eutectic Solvent-based Chaotic Extraction of Phycobiliprotein Using Microwave-assisted Liquid-liquid Micro-extraction from Spirulina (Arthrospira platensis) and Its Biological activity Determination. Algal Research, 44, 101709.
  • [47] Deb, D., Mallick, N., Bhadoria, P. B. S. 2021. Engineering Culture Medium for Enhanced Carbohydrate Accumulation in Anabaena variabilis to Stimulate Production of Bioethanol and Other High-value Co-products under Cyanobacterial Refinery Approach. Renewable Energy, 163, 1786-1801.
  • [48] Guihéneuf, F., Stengel, D. B. 2015. Towards the Biorefinery Concept: Interaction of Light, Temperature and Nitrogen for Optimizing The Co-production of High-value Compounds in Porphyridium purpureum. Algal Research, 10, 152-163.
  • [49] Wang, G. C., Zhou, B. C., Tseng, C. K. 1997. Spectroscopic Properties of The C-phycocyanin-allophycocyanin Conjugate and The Isolated Phycobilisomes from Spirulina platensis. Photosynthetica, 34(1), 57-65.
  • [50] Schipper, K., Fortunati, F., Oostlander, P. C., Muraikhi, M. Al, Mohammed, H., Jabri, S. J. Al, Wijffels, R. H., Barbosa, M. J. 2020. Production of Phycocyanin by Leptolyngbya sp. in Desert Environments. Algal Research, 47, 101875.
  • [51] Akaberi, S., Krust, D., Müller, G., Frey, W., Gusbeth, C. 2020. Impact of Incubation Conditions on Protein and C-Phycocyanin Recovery from Arthrospira platensis Post-pulsed Electric field Treatment. Bioresource Technology, 306, 123099.
  • [52] Chittapun, S., Jonjaroen, V., Khumrangsee, K., Charoenrat, T. 2020. C-phycocyanin Extraction from Two Freshwater Cyanobacteria by Freeze Thaw and Pulsed Electric Field Techniques to Improve Extraction Efficiency and Purity. Algal Research, 46, 101789.
  • [53] Chi, Z., Hong, B., Tan, S., Wu, Y., Li, H., Lu, C. 2020. Impact Assessment of Heavy Metal Cations to The Characteristics of Photosynthetic Phycocyanin. Journal of Hazardous Materials, 391, 122225.
  • [54] Prabakaran, G., Sampathkumar, P., Kavisri, M., Moovendhan, M. 2020. Extraction and Characterization of Phycocyanin from Spirulina platensis and Evaluation of Its Anticancer, Antidiabetic and Antiinflammatory Affect. International Journal of Biological Macromolecules, 153, 256-263.
  • [55] Nwoba, E. G., Parlevliet, D. A., Laird, D. W., Alameh, K., Moheimani, N. R. 2020. Outdoor Phycocyanin Production in A Standalone Thermally-insulated Photobioreactor. Bioresource Technology, 315, 123865.
  • [56] Ebrahimian, M., Pirouzmand, A., Rabiee, A. 2020. Time-invariant Reliability Assessment for A Passive Heat Removal System Based on FORM Methodology with A New Approach for Finding The Design Point. Annals of Nuclear Energy, 147, 107740.
  • [57] Wagner, M. J., Hamilton, W. T., Newman, A., Braun, R., Dent, J., Diep, C. 2018. Optimizing Dispatch for A Concentrated Solar Power Tower. Solar Energy, 174, 1198-1211.
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-7688
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1995
  • Yayıncı: Süleyman Demirel Üniversitesi
Sayıdaki Diğer Makaleler

Pamuk Küspesinin Sıva Harcı İçerisinde Agrega Olarak Kullanılabilirliğinin Araştırılması

Yusuf Tahir ALTUNCI, Cenk ÖCAL

Görüntü İşlemede Görüntü Kalitesinin Belirlenmesi için Alternatif Bir İstatistiksel Yaklaşım: Bland-Altman Metodu

Şevkiye BABACAN, İBRAHİM KILIÇ

Metilen Mavisinin SiCl@AgNP Nanokompoziti ile Gideriminin İncelenmesi

Bülent KIRKAN, Burcu AKYOL

m-Sübstitüeli Monoazo Boyarmaddeler: Sentez, Karakterizasyon ve Absorpsiyon Özellikleri

Tuğçe TÜRKMEN, Barış SEZGİN, Tahir TİLKİ

Al-10Si-xMg Alaşımının CALPHAD Metodolojisi ile Termodinamik Karakterizasyonu

Yağız AKYILDIZ, Onur ÖZTÜRK, Bartu SİMSAR

Kanser Tedavisinde Kullanılan İlaçların Moleküler Kenetlenme Analizi

A. Demet DEMİRAG, Sefa ÇELİK, Sevim AKYÜZ, Ayşen ÖZEL

Sentetik Atıksuda Porphyridium cruentum CCALA 415'den Fikoeritrin ve Fikosiyanin Üretiminin Arttırılması: Mikroalglere Teorik Metotların Uygulanması

Melih ONAY

Tarihi Yapılarda Kagir Yapı Malzemelerinin Koruma Uygulamalarında Kullanılabilecek Bir Yöntem Önerisi

Zeynep Sena KARKAŞ, Seden ACUN ÖZGÜNLER

Mahalle Mescitlerinin Akustik Konfor Analizi: Konya’dan İki Örnek

Rumeysa TUNA, Fatih SEMERCİ, Mehmet Emin BAŞAR, Ali KAYGISIZ

NiCr Bağ Kaplamaya Sahip Termal Bariyer Kaplama (TBC) Sisteminin Mekanik Alaşımlama Yöntemi Kullanılarak Üretilen CaO-MgO-Al2O3-SiO2 (CMAS) Tozları ile Korozyon Davranışlarının İncelenmesi

Aslıhan ATAR, Yasin OZGURLUK