Orijinal Yağ Matriksinde Hızlı Nikel Tayini için UV-Vis Spektrofotometrik Metot Geliştirilmesi

Bu çalışmada, yenilebilir yağlarda nikel tayini için yeni bir metot sunulmuştur. Önerilen prosedür, N, N’-bis(4-metoksisalisiliden) etilendiamin ve nikelin yağ ortamında kompleksleşmesi ve 396 nm’de UV-görünür bölgede spektrofotometrik tayinine dayanmaktadır. Kompleks oluşumu 20 saniyede tamamlanmaktadır. n-Hekzan ve aseton karışımı (1:4, h/h) çözücü olarak kullanılmış ve kompleksin molar absorpsiyon katsayısı 6540 L mol-1 cm-1 olarak hesaplanmıştır. Tayin ve gözlenebilme sınırları sırasıyla 0,24 ve 0,82 µg g-1 olarak bulunmuştır. Kalibrasyon grafiği 0,25-1,50 mg L-1 nikel derişimi aralığında doğrusaldır ve korelasyon katsayısı 0,9995’dir. Önerilen yöntemin gerçekliği organometalik nikel standardı kullanılarak test edilmiş; % geri kazanım ve % bağıl standart sapma değerleri sırasıyla % 97,0 ve % 3,8 olarak bulunmuştur. Ayrıca, geliştirilen yöntem nikel katılmış gerçek örneklerde de başarıyla uygulanmış ve % geri kazanım değerleri %90,0 -104,0 aralığında bulunmuştur.

Development of UV-Vis Spectrophotometric Method for Rapid Nickel Determination in Original Oil Matrix

A novel method for the determination of nickel in edible oils was proposed. The suggested procedure was on the basis of complexation of N, N’- bis(4-methoxysalicylidene) ethylenediamine and nickel in oily media and UVVisible spectrophotometric determination at 396 nm. The complex formation was completed within 20 seconds. The mixture of n-hexane and acetone (1:4, v/v) was used as solvent and the molar absorptivity of the complex was calculated as 6540 L mol-1 cm-1. The limits of detection and quantification were 0.24 and 0.82 µg g-1, respectively. The calibration graph was linear between 0.25-1.50 mg L-1 nickel concentration with 0.9995 correlation coefficient. The reliability of the suggested method was tested by analysis of organometallic nickel standard and the recovery and relative standard deviation were found as 97.0 % and 3.8 %, respectively. Furthermore, the developed method was successfully applied on nickel spiked real samples and recovery values were between 90.0 - 104.0 %.

___

  • Trindade, A. S. N., Dantas, A. F., Lima, D. C., Ferreira, S. L. C., Teixeira, L. S. G. 2015. Multivariate optimization of ultrasound-assisted extraction for determination of Cu, Fe, Ni and Zn in vegetable oils by high-resolution continuum source atomic absorption spectrometry. Food Chemistry, 185(2015), 145-150.
  • Llorent-Martinez, E. J., Ortega-Barrales, P., Cordova, M. L. F., Dominguez-Vidal, A., RuizMedina, A. 2011. Investigation by ICP-MS of trace element levels in vegetable edible oils produced in Spain. Food Chemistry, 127(2011), 1257-1262.
  • Savio, M., Ortiz, M. S., Almeida, C. A., Olsina, R. A., Martinez, L. D., Gil, R. A. 2014. Multielemental analysis in vegetable edible oils by inductively coupled plasma mass spectrometry after solubilisation with tetramethylammonium hydroxide. Food Chemistry, 159(2014), 433- 438.
  • Tokay, F., Bağdat, S. 2016. Extraction of nickel from edible oils with a complexing agent prior to determination by FAAS. Food Chemistry, 197(2016), 445-449.
  • Tokay, F., Bağdat Yaşar, S. 2011. Yemeklik Yağlarda Çinko Tayini için Yeni Bir Analitik Yöntem. Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(2011), 57-68.
  • Tokay, F., Bağdat, S. 2016. Novel and Validated Spectrophotometric Matrix Matching Method for Simple and Rapid Determination of Chromium in Oily Media. Spectroscopy and Spectral Analysis, 36(2016), 1634-1638.
  • Baran, E. K., Bağdat Yaşar, S. 2013. Spectrometric Determination of Copper in Edible Oil Based on the Extraction with N,N′- bis(5-methoxy-salicylidene)-2-hydroxy-1,3- propanediamine. Food Science and Technology Research, 19(2013), 647-653.
  • Tokay, F., Bağdat, S. 2015. Determination of Iron and Copper in Edible Oils by Flame Atomic Absorption Spectrometry After Liquid–Liquid Extraction. Journal of American Oil Chemists’ Society, 92(2015), 317-322.
  • Baran, E. K., Bağdat Yaşar, S. 2012. Zinc and nickel determination in liquid edible oils by FAAS after the extraction. European Journal of Lipid Science and Technology, 114(2012), 1320- 1326.
  • Ni, Z., Tang, F., Liu, Y., Shen, D., Mo, R. 2015. Multielemental Analysis of Camellia Oil by Microwave Dry Ashing and Inductively Coupled Plasma Mass Spectrometry. Analytical Letters, 48(2015), 1777-1786.
  • Lepri, F. G., Chaves, E. S., Vieira, M. A., Ribeiro, A. S., Curtius, A. J., De Oliveira, L. C. C., De Campos, R. C. 2011. Determination of Trace Elements in Vegetable Oils and Biodiesel by Atomic Spectrometric Techniques—A Review. Applied Spectroscopy Reviews, 46(2011), 175- 206.
  • Baran, E. K., Bağdat Yaşar, S. 2010. Copper and Iron Determination with [N,N′- Bis(salicylidene)-2,2′-dimethyl-1,3- propanediaminato] in Edible Oils Without Digestion. Journal of American Oil Chemists’ Society, 87(2010), 1389-1395.
  • Zhu, F., Fan, W., Wang, X., Qu, L., Yao, S. 2011. Health risk assessment of eight heavy metals in nine varieties of edible vegetable oils consumed in China. Food and Chemical Toxicology, 49(2011), 3081-3085.
  • Karimi, M., Dadfarnia, S., Shabani, A. M. H., Tamaddon, F., Azadi, D. 2015. Deep eutectic liquid organic salt as a new solvent for liquidphase microextraction and its application in ligandless extraction and pre-concentraion of lead and cadmium in edible oils. Talanta, 144(2015), 648-654.
  • Anthemidis, A. N., Arvanitidis, V., Stratis, J. A. 2005. On-line emulsion formation and multielement analysis of edible oils by inductively coupled plasma atomic emission spectrometry. Analytica Chimica Acta, 537(2005), 271-278.
  • Robina, N. F., Brum, D. M., Cassella, R. J. 2012. Application of the extraction induced by emulsion breaking for the determination of chromium and manganese in edible oils by electrothermal atomic absorption spectrometry. Talanta, 99(2012), 104-112.
  • Gündüz, S., Akman, S. 2015. Investigation of trace element contents in edible oils sold in Turkey using microemulsion and emulsion procedures by graphite furnace atomic absorption spectrophotometry. LWT- Food Science and Technology, 64(2015), 1329-1333.
  • Cindric, I. J., Zeiner, M., Steffan, I. 2007. Trace elemental characterization of edible oils by ICP– AES and GFAAS. Microchemical Journal, 85(2007), 136-139.
  • Peeters, K., Zuliani, T., Zigon, D., Milacic, R., Scancar, J. 2017. Nickel speciation in cocoa infusions using monolithic chromatography – Post-column ID-ICP-MS and Q-TOF-MS. Food Chemistry, 230(2017), 327-335.
  • Mirabi, A., Rad, A. S., Nourani, S. 2015. Application of modified magnetic nanoparticles as a sorbent for preconcentration and determination of nickel ions in food and environmental water samples. Trends in Analytical Chemistry, 74(2015), 146-151.