2D-DOST Özellik Çıkarımı Yöntemi ve LS-SVM Sınıflandırıcı Tabanlı Doku Sınıflandırma Sistemi

Bu çalışmada, doku görüntülerinin sınıflandırılması için 2D-DOST (İki Boyutlu Ayrık Orthonormal Stockwell Dönüşümü) ve LS-SVM (En Küçük Kareler Destek Vektör Makineleri) tabanlı yeni bir sınıflandırıcı sistemi önerilmiştir. Önerilen sistem, özellik çıkarımı ve sınıflandırma olmak üzere iki ana bölümden oluşmaktadır. Özellik çıkarımı aşamasında, görüntüleri temsil eden ait ayırt edici özellik vektörleri 2D-DOST tabanlı özellik çıkarım yöntemi ile elde edilmektedir. Sınıflandırma aşamasında ise yüksek başarım oranı ve doğruluğa sahip olan LS-SVM sınıflandırıcısı ile doku görüntüleri sınıflandırılmaktadır. LS-SVM’nin eğitimi her bir doku görüntüsüne ait ayırt edici özellik vektörleri üzerinde gerçekleştirilmiştir. Test verisi olarak hazırlanan doku görüntüleri eğitilmiş LS-SVM sınıflandırıcının girişine uygulanmıştır. Önerilen yöntemin performans testleri için alt-görüntüler ile elde edilen farklı veri setleri üzerinde gerçekleştirilmiştir. Bu veri setleri hem normal doku görüntülerini hem de gürültülü doku görüntülerini içermektedir. Veri setleri içerisindeki alt görüntüler Brodatz ve Kylberg doku veri tabanlarından türetilmiştir. Gürültülü verilerin oluşturulmasında, farklı seviyelerde Gaussian ve Tuz&Biber gürültüsü kullanılmıştır. Çalışma sonuçları, önerilen 2D-DOST ve LS-SVM tabanlı sınıflandırıcının doku görüntülerini yüksek başarım oranı ile sınıflandırabildiğini ve gürültüye karşı gürbüz olduğunu göstermektedir.

Texture Classification System Based on 2D-DOST Feature Extraction Method and LS-SVM Classifier

In this paper, a new 2D-DOST (Two-Dimensional Discrete Orthonormal Stockwell Transform) and LS-SVM (Least Squares Support Vector Machines) based classifier system is proposed for classification of texture images. The proposed system contains two main stages. These stages are feature extraction and classification. In the feature extraction stage, the distinguishing feature vectors which represent descriptive features of texture images are obtained by using a 2D-DOST based feature extraction method. In the classification stage, the texture images are classified by the LS-SVM since this classifier has high success rate and accuracy. The training of LS-SVM is performed on the distinguishing feature vector of each texture component. Texture samples are recognized by the test data applied to the input of trained LS-SVM classifier. Performance evaluations of the proposed method are carried on different datasets obtained from sub-images. These datasets include both the normal texture images and noise added images. Sub-images into datasets are derived from Brodatz and Kylberg texture images database. Gaussian and Salt & Pepper noise with different levels are used for creating noisy datasets. According to the study results, the proposed 2D-DOST and LS-SVM based classifier has a capability of classifying texture images with high success rate and noise robustness.

___

  • Kylberg, G. 2011. The Kylberg Texture Dataset v. 1.0, Centre for Image Analysis, Swedish University of Agricultural Sciences and Uppsala University, External report (Blue series) No. 35.
  • Brodatz, P. 1966. Textures, a photographic album for artists and designers. New York: Dover.
  • Karabatak, M., Ince, M.C., Sengur, A. 2011. Wavelet domain association rules for efficient texture classification. Applied Soft Computing, 11(1), 32-38.
  • Celik, T., Tjahjadi, T. 2009. Multiscale texture classification using dual-tree complex wavelet transform. Pattern Recognition Letters, 30(3), 331-339.
  • Avcı, E., Sengur, A., Hanbay, D. 2009. An optimum feature extraction method for texture classification. Expert Systems with Applications, 36(3), 6036-6043.
  • Li, S., Shawe-Taylor, J. 2005. Comparison and fusion of multiresolution features for texture classification. Pattern Recognition Letters, 26(5), 633-638.
  • Li, S., Kwok, J.T., Zhu, H., Wang, Y. 2003. Texture classification using the support vector machines. Pattern recognition, 36(12), 2883- 2893.
  • Suralkar, S. R., Karode, A. H., Pawade, P. W. 2012. Texture image classification using support vector machine. International Journal of Computer Applications in Technology, 3(1), 71- 75.
  • Sengur, A., Turkoglu, I., Ince, M.C. 2007. Wavelet packet neural networks for texture classification. Expert systems with applications, 32(2), 527-533.
  • Backes, A. R, Casanova, D., Bruno, O.M. 2013. Texture analysis and classification: A complex network-based approach. Information Sciences, 219, 168-180.
  • Wang, Y., Orchard, J. 2009. On the use of the Stockwell transform for image compression. In IS&T/SPIE Electronic Imaging (pp. 724504- 724504). International Society for Optics and Photonics.
  • Wang, Y., Orchard, J. 2009. The discrete orthonormal Stockwell transform for image restoration. (ICIP), 16th IEEE International Conference on In Image Processing, 2761-2764.
  • Drabycz, S., Stockwell, R.G., Mitchell, J.R. 2009. Image texture characterization using the discrete orthonormal S-transform. Journal of digital imaging, 22(6), 696-708.
  • Stockwell, R.G. 2007. A basis for efficient representation of the S-transform. Digital Signal Processing, 17(1), 371-393.
  • Kokare, M., Biswas, P., Chatterji, B. 2007. Texture image retrieval using rotated wavelet filters. Pattern Recognition Letters. 28, 1240–1249.
  • Soulard, R., Carré, P. 2011. Quaternionic wavelets for texture classification. Pattern Recognition Letters, 32(13), 1669-1678.
  • Dong, Y., Ma, J. 2011. Wavelet-based image texture classification using local energy histograms. IEEE Signal Processing Letters, 18(4), 247-250.
  • Li, W., Mao, K., Zhang, H., Chai, T. 2010. Designing compact Gabor filter banks for efficient texture feature extraction., IEEE 11th International Conference In Control Automation Robotics & Vision (ICARCV), pp. 1193-1197.
  • Riaz, F., Hassan, A., Rehman, S., Qamar, U. 2013. Texture classification using rotation-and scaleinvariant gabor texture features. IEEE Signal Processing Letters, 20(6), 607-610.
  • Wicaksono, Y., Wahono, R. S., Suhartono, V. 2015. Color and Texture Feature Extraction Using Gabor Filter-Local Binary Patterns for Image Segmentation with Fuzzy C-Means. Journal of Intelligent Systems, 1(1), 15-21.
  • Campisi, P., Neri, A., Scarano, G. 2002. Model based rotation-invariant texture classification. In Image Processing. Proceedings. 2002 International Conference on, 3, III-117.
  • Krishna, A. N., Prasad, B. G. 2015. Lattice vector quantisation for indexing and retrieval of medical images using texture features based on 2-D Wold decomposition. International Journal of Image Mining, 1(1), 23-44.
  • Li, S.Z. 2012. Markov random field modeling in computer vision. Springer Science & Business Media.
  • Dharmagunawardhana, C., Mahmoodi, S., Bennett, M., Niranjan, M. 2016. Rotation invariant texture descriptors based on Gaussian Markov random fields for classification. Pattern Recognition Letters, 69, 15-21.
  • Cariou C, Chehdi J. 2008. Unsupervised texture segmentation/classification using 2-D autoregressive modeling and the stochastic expectation–maximization algorithm. Pattern Recognition Letters. 29, 905–917.
  • Randen, T., Husoy, J.H. 1999. Filtering for texture classification: A comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(4), 291-310.
  • Yuan, F., Shi, J., Xia, X., Yang, Y., Fang, Y., Wang, R. 2016. Sub Oriented Histograms of Local Binary Patterns for Smoke Detection and Texture Classification. KSII Transactions on Internet and Information Systems (TIIS), 10(4), 1807-1823.
  • Liu, L., Lao, S., Fieguth, P. W., Guo, Y., Wang, X., Pietikäinen, M. 2016. Median robust extended local binary pattern for texture classification. IEEE Transactions on Image Processing, 25(3), 1368-1381.
  • Haralick RM, Shanmugam K, Dinstein IH. 1973. Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics, (6), 610-621.
  • Kim, S. C., & Kang, T. J. 2007. Texture classification and segmentation using wavelet packet frame and Gaussian mixture model. Pattern Recognition, 40(4), 1207-1221.
  • Jain, R., Kasturi, R., Schunck, B. G. 1995. Machine vision (Vol. 5). New York: McGraw-Hill.