Lie Cebiroidleri Üzerindeki Lagrange Dinamiğinin Eşlenmesi Problemi Üzerine

Lie cebiroidleri, bir anlamda tanjant demetini ve Lie cebiri yapısını beraber ihtiva eden ve fakat daha genel olan geometrik inşaalardır. Lagrange dinamiğinin en genel ifadesi Lie cebiroidleri üzerinde mümkündür. Bu makalede, karşılıklı (Lie cebiroidi üzerinde tanımlı) etki içindeki iki Lagrange dinamiğinin beraber davranışı, geometrik ve cebirsel bir yol ile elde edilecektir. Bu bakış açısı ile etkileşim Lie cebiroidlerinin birbirleri üzerine olan lineer temsilleri (etkileri) ifade edilecektir. Bu sayede, belirli uyumluluk şartını sağlayan karşılıklı etki içindeki iki Lie cebiroidinin eşlenmesi, diğer bir ifade ile tek bir Lie cebiroidi olarak yazılması sağlanacaktır. Sonrasında ise eşlenmiş Lie cebiroidi üzerinde Lagrange dinamiği yazılacaktır. Elde edilecek kollektif (eşlenmiş) hareket denklemleri, bireysel davranışların gözlemlenmesinin yanı sıra karşılıklı etki terimlerinin de belirlenmesine olanak verecektir. Çalışmamız esnasında bir çok örnek sunularak teorik tanımların daha net anlatımı yakalanmaya çalışılacaktır.

On The Problem of Matched Lagrangian Dynamics on Lie Algebroids

Lie algebroids are geometric constructions generalizing both tangent bundles and Lie algebras. Lagrangian dynamics is possible on Lie algebroid frameworks in its most general form. In this work, we obtain the joint behaviour of two mutually interacting Lagrangian systems in a geometric and an algebraic way. Here, the interaction is decoded into linear representations (actions) of two Lie algebroids onto each other. By this means, mutally interacting two Lie algebroids those satisfying some certain compatibility condition are matched, in other words, they are recast as trivially intersecting Lie subalgebroids of a single Lie algebroid. Then, Lagrangian dynamics is recast on the matched Lie algebroid. In this framework, the equations involve both the dynamics of constitutive subsystems and the action terms. Along with the theory, we provide several examples.

___

  • [1] Abraham, R., Marsden, J. E., Marsden, J. E. 1978. Foundations of mechanics . Reading, Massachusetts: Benjamin/Cummings Publishing Company.
  • [2] Holm, D. D., Schmah, T., Stoica, C. 2009. Geometric mechanics and symmetry: from finite to infinite dimensions. Vol. 12. Oxford University Press.
  • [3] Yaremko, Y. 2000. The Tangent Groups of a Lie Group and Gauge Invariance in Lagrangian Dynamics. In Proceedings of Institute of Mathematics of NAS of Ukraine. 30(2), 544-550.
  • [4] Marsden, J. E., Ratiu, T. S. 1995. Introduction to mechanics and symmetry. Physics Today, 48 (12), 65.
  • [5] Weinstein, A. 1996. Lagrangian mechanics and groupoids. Fields Institute Proc. AMS, 7, 207- 231.
  • [6] Martínez, E. 2001. Lagrangian mechanics on Lie algebroids. Acta Applicandae Mathematica, 67 (3), 295-320.
  • [7] Martínez, E. 2009. Lie algebroids and Mechanics. In AIP Conference Proceedings, American Institute of Physics, 1130(1), 3-33.
  • [8] Ratiu, T., Moerbeke, P. V. 1982. The Lagrange rigid body motion. In Annales de l'institut Fourier. 32(1), 211-234.
  • [9] Holm, D. D., Marsden, J. E., Ratiu, T. S. 1998. The Euler–Poincaré equations and semidirect products with applications to continuum theories. Advances in Mathematics, 137(1), 1-81.
  • [10] Esen, O., Sütlü, S. 2017. Lagrangian dynamics on matched pairs. Journal of Geometry and Physics, 111, 142-157.
  • [11] Esen, O., Sütlü, S. 2021. Discrete dynamical systems over double cross-product Lie groupoids. International Journal of Geometric Methods in Modern Physics. 18(04), 2150057.
  • [12] Mackenzie, K., Kirill, M., Mackenzie, K. C. 1987. Lie groupoids and Lie algebroids in differential geometry. Cambridge university press.
  • [13] Mokri, T. 1997. Matched pairs of Lie algebroids. Glasgow Mathematical Journal, 39(2), 167-181.
  • [14] Pradines, J. 1967. Theorie de Lie pour les groupoides differentiable. CR Acad. Sci. Paris, 264, 245-248.
  • [15] Crampin, M., Saunders, D. 2016. Cartan geometries and their symmetries: a Lie algebroid approach. Springer.
  • [16] Mackenzie, K. C., Mackenzie, K. C. 2005. General theory of Lie groupoids and Lie algebroids. Cambridge University Press.
  • [17] Marrero, J. C., de Diego, D. M., Martínez, E. 2006. Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids. Nonlinearity, 19(6), 1313.
  • [18] Iglesias, D., Marrero, J. C., Martín de Diego, D., Martínez, E., Padrón, E. 2007. Reduction of symplectic Lie algebroids by a Lie subalgebroid and a symmetry Lie group. SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 3, 049.
  • [19] Cortés, J.,de Leon, M., Marrero, J. C., de Diego, D. M., Martinez, E. 2006. A survey of Lagrangian mechanics and control on Lie algebroids and groupoids. International Journal of Geometric Methods in Modern Physics, 3(03), 509-558.
  • [20] Mackenzie, K. C. 1992. Double Lie algebroids and second-order geometry, I. Advances in Mathematics, 94(2), 180-239.
  • [21] Brown, R. 1972. Groupoids as coefficients. Proceedings of the London Mathematical Society, 3(3), 413-426.
  • [22] Majid, S. 1990. Matched pairs of Lie groups associated to solutions of the Yang-Baxter equations. Pacific Journal of Mathematics, 141(2), 311-332.
  • [23] Majid, S. 2000. Foundations of quantum group theory. Cambridge university press.
  • [24] Higgins, P. J., Mackenzie, K. 1990. Algebraic constructions in the category of Lie algebroids. Journal of Algebra, 129(1), 194-230.
  • [25] Lu, J. H. 1997. Lie algebroids associated to Poisson actions. In Duke Math. J.
  • [26] Mackenzie, K. C. 1995. Lie algebroids and Lie pseudoalgebras. Bulletin of the London Mathematical Society, 27(2), 97-147.
  • [27] Martínez, E. 2015. Higher-order variational calculus on Lie algebroids. Journal of Geometric Mechanics, 7(1), 81-108.
  • [28] Esen, O., Kudeyt, M., Sütlü, S. 2021. Second order Lagrangian dynamics on double cross product groups. Journal of Geometry and Physics, 159, 103934.
  • [29] Esen, O., Sütlü, S. 2016. Hamiltonian dynamics on matched pairs. International Journal of Geometric Methods in Modern Physics, 13(10), 1650128.