Kesirli Mertebeden Otokatalitik Reaksiyon Modelinin Nümerik Çözümleri

Bu makale kesirli mertebeden otokatalitik kimyasal modelin nümerik çözümleri ile ilgilidir. Model 0 ൏ ߙ ൏ 1 için ߙ kesirli mertebeden lineer olmayan bir diferansiyel denklem sistemidir. Çokadımlı yöntemlere dayanan (açık ve kapalı), standart olmayan sonlu fark yöntemi ve integral çarpanı yöntemi (PI) olmak üzere üç farklı nümerik yöntem geliştirilmiştir. İlk iki yöntem diferansiyel denklem modeline ve PI yöntemi model problemin integral denklem formulasyonuna dayanmaktadır. Geliştirilen yöntemlerin tamlığı, etkinliği ve bazı sayısal karşılaştırılmaları nümerik sonuçlarla gösterilmiştir.

Numerical Solutions of Fractional Order Autocatalytic Chemical Reaction Model

The main concern of this paper is the study and the development of numerical methods for solving fractional order autocatalytic chemical reaction model problem. This is a nonlinear fractional order differential equation of fractional order ߙ ,where 0 ൏ ߙ ൏ 1. Three different (explicit and implicit) schemes based on multistep methods, nonstandard finite difference method and the product integration (PI) method are developed. The first two schemes are based on differential equation model and the PI scheme is constructed by the integral equation formulation of the model problem. The accuracy, efficiency and some numerical comparisons of the developed methods are demonstrated in numerical results.

___

  • Wheatcraft, S., Meerschaert, M., 2008. Fractional Conservation of Mass, Advances in Water Resources 31 (2008) 1377‐1381.
  • Zhou, T.S., Li, C.P., 2005. Synchronization in fractional‐order differential systems, Phys. D, 212 (2005)111‐125.
  • Young, A.,1954. Approximate product‐ integration, Proceedings of the Royal Society of London Series A 224(1954) 552‐561.
  • Ünlü, C., Jafari, H., Baleanu, D., 2013. Revised Variational Iteration Method for Solving Systems of Nonlinear Fractional‐Order Differential Equations, Abstract and Applied Analysis, (2013),Article ID 461837, 7 p.
  • Samko, S. G., Kilbas, A. A., Marichev, O. I.,1993. Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers.
  • Tenreiro Machado J., Stefanescu, P., Tintareanu, O., Baleanu, D.,2013. Fractional calculus analysis of cosmic microwave backgrounds, Romanian Reports in Physics, Academic Press, San Diego‐ Boston‐New York‐London‐Tokyo‐Toronto, 65 (1)(2013) 316‐323.
  • Podlubny, I.,1999. Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. Academic Press, San Diego‐ Boston‐New York‐London‐Tokyo‐Toronto, 368p.
  • Ongun, M.Y., Arslan, D., Garrappa, R., 2013. Nonstandard Finite Difference Scemes for fractional order Brusselator system, Adv. Difference Equ., doi: 10.1186/1687‐1847 (2013) 102.
  • Oldham, K.B., Spanier, J.,1974. The Fractional Calculus, Mathematics in Science and Engineering, Academic Press,New York.
  • Momani,S., Odibat,Z., 2006. Analytical approach to linear fractional partial differential equations arising in fluid mechanics, Phys. Lett. A, 355 (2006) 271‐279.
  • Momani,S., Odibat, Z., 2007. Comparison between homotopy perturbation method and the variational iteration method for linear fractional partial differential equations, Computers and Math. Appl., 54(7)(2007)910‐ 919.
  • Miller, K.S., Ross, B.,1993. An Introduction to the Fractional Calculus and Fractional Differential Equations, John Willey & Sons, New York.
  • Mickens, R.E., 1993. Nonstandard finite difference models of differential equations. River Edge, NJ: World Scientific Publishing Co. Inc..
  • Mickens, R.E.., 2007. Calculation of denominator functions for nonstandard finite difference schemes for differential equations satisfying a positivity condition, Numer. Methods Partial Differential Equations 23(3) (2007) 672‐691.
  • Mickens, R.E., Smith, A., 1990. Finite‐difference models of ordinary differential equations: influence of denominator functions. J. Franklin Inst.,327, (1990)143‐149.
  • Magin, R. L.,2010. Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl. 59 (5) (2010)1586‐1593.
  • Lubich, C., 1986. Discretized fractional calculus, SIAM J. Math. Anal. 17 (1986) 704‐719.
  • Luchko, Y., Gorenflo, R., 1999. An operational method for solving fractional differential equations with the Caputo derivatives, Acta Math. Vietnam .24(2) (1999) 207‐233.
  • C. Li, C. Ye., 2011. Numerical approaches to fractional calculus and fractional ordinary differential equation, J. Comput. Phys. 230(2011) 3352‐3368.
  • Kilbas,A.A., Srivastava,H.M., Trujillo,J. J.,2006. Theory and applications of fractional differential equations,North‐Holland Mathematics Studies, 204(2006)135‐209.
  • Garrappa R., Popolizio, M., 2011. On accurate product integration rules for linear fractional differential equations, J. Comput. Appl. Math., 235(2011)1085‐1097.
  • Garrappa R., 2010. On linear stability of predictor–corrector algorithms for fractional differential equations, Int. J. Comput. Math. 87(2010) 2281‐2290.
  • Garrappa, R., 2009. On some explicit Adams multistep methods for fractional differential equations J. Comput. Appl. Math., 229(2009)392‐399.
  • Galeone, L., Garrappa, R., 2009. Explicit methods for fractional differential equations and their stability properties, J. Comput. Appl. Math., 228(2009)548‐560.
  • Galeone, L., Garrappa, R., 2008. Fractional Adams‐Moulton methods, Math. Comput. Simulation,79 (2008)1358‐1367.
  • Galeone, L., Garrappa, R., 2006. On multisep methods for differential equations of fractional order, Mediterr. J. Math, 3(2006)565‐580.
  • V.S. Erturk, S. Momani, Z. Odibat. (2008). Application of generalized differential transform method to multi‐order fractional diffrential equations. Commun. Nonlinear Sci. Numer. Simul. 13(8)(2008) 1642‐1654.
  • Erturk, V.S., Momani, S., Odibat, Z., 2008. Application of generalized differential transform method to multi‐order fractional diffrential equations. Commun. Nonlinear Sci. Numer. Simul. 13(8) (2008)1642‐1654.
  • Matignon, D., D’andrea‐Novel, B.,1997, Observer‐ based controllers for fractional differential equations systems, in Conference on Decision and Control San Diego, CA, December, SIAM, IEEE‐CSS, 4967‐4972.
  • Lubich, C., 1986. Discretized fractional calculus. SIAM J. Math. Anal., 17(3) (1986) 704‐719.
  • Diethelm K., Ford, N.J., Freed, A.D., Luchko, Y.,2005. Algorithms for the fractional calculus: a selection of numerical methods. Computer methods in applied mechanics and engineering, 194 (6) (2005) 743‐773.
  • Diethelm K., Ford, N.J., Freed, A.D., 2002. A predictor‐corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics., 29(1‐4) (2002) 3‐22.
  • Diethelm, K., Freed, A. D.,1998. The FracPECE subroutine for the numerical solution of differantial equations of fractional order, in Forschung und Wissenschaftliches Rechmen, 1999, 57‐71.
  • Deng, W.H., Li, W.H., 2005. Chaos synchronization of the fractional Lü System, Physica A, 353, (2005) 61‐72.
  • Caponetto, R., Maione, G., Pisano, A., Rapaic, M. M. R., Usai, E., 2013. Analysis and shaping of the self‐sustained oscillations in relay controlled fractional‐order systems, Fractional Calculus and Applied Analysis 16 (1) (2013) 93‐108.
  • Cafagna, D., Grassi, G.,2012. Observer‐based projective synchronization of fractional systems via a scalar signal: Application to hyperchaotic Rossler systems, Nonlinear Dynam., 68 (1‐2) (2012) 117–128.
  • Bueno‐Orovio, A., Kay, D., Grau, V., Rodriguez, B., Burrage,K.,2013. Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarisation, Tech. Rep. OCCAM 13/35, Oxford Centre for Collaborative Applied Mathematics, Oxford 464 (UK),
  • Baleanu, D., Mohammadi, H., Rezapour, S., 2012. Positive solutions of an initial value problem for nonlinear fractional differential equations. Abstract and Applied Analalysis, Art. ID 837437, (2012),7p.
  • Arslan D.,2013. Numerical Solutions of Fractional Order Differential Equations Systems, Thesis, SDU Graduate School of Natural and Applied Sciene, Isparta, Turkey, 57p.
  • Arikoglu, A., Ozkoli I., 2007. Solution of fractional differential equation by using differential transforms method Chaos Solitions Fractals; 34(5) (2007),1473‐1481.
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-7688
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1995
  • Yayıncı: Süleyman Demirel Üniversitesi