Isı Aktarımı ile Birleştirilmiş MHD Denklemlerinin Chebyshev Spektral Kollokasyon Yöntemi ile Yaklaşımı
Bu çalı¸smada, enerji denklemi ile birle¸stirilmi¸s tam manyetohidrodinamik (MHD) denklemlerinin yakla¸sık çözümleri için Chebyshev spektral kollokasyon yöntemi (CSCM) önerilmektedir. ˙Iki boyutlu, zamana ba˘glı laminer ve sıkı¸stırılamaz MHD akı¸sı, ısı transferi Boussinesq yakla¸sımı kullanılarak termal etki ile birle¸stirilerek ele alınmaktadır. MHD akı¸sı, dikey olarak uygulanan manyetik alan etkisi altında olan kare kesitli bir kanalda gerçekle¸smekte, ayrıca akan sıvının elektriksel iletken olması nedeniyle manyetik indüksiyon göz önünde bulundurulmaktadır. Akım fonksiyonu, girdap (vortisite), sıcaklık, manyetik akım fonksiyonu ve akım yo˘gunlu˘gu türünden verilen temel denklemlerin uzaysal ayrıkla¸stırılması CSCM kullanılarak, zaman integrasyonu ise ko¸sulsuz kararlı geri farklar yöntemi kullanılarak çözüm elde edilmi¸stir. De˘gi¸sen Reynolds (Re), manyetik Reynolds (Rem), Rayleigh (Ra) ve Hartmann (Ha) sayıları de˘gerlerinin MHD akı¸sı ve ısı transferi üzerindeki etkileri ara¸stırılmaktadır.
Chebyshev Spectral Collocation Method Approximation to Thermally Coupled MHD Equations
In this study, a Chebyshev spectral collocation method (CSCM) approximationis proposed for solving the full magnetohydrodynamics (MHD) equations coupledwith energy equation. The MHD flow is two-dimensional, unsteady, laminar and incompressible,and the heat transfer is considered using the Boussinesq approximation forthermal coupling. The flow takes place in a square cavity which is subjected to a verticallyapplied external magnetic field, and the presence of the induced magnetic field is alsotaken into account due to the electrical conductivity of the fluid. The governing equationsgiven in terms of stream function, vorticity, temperature, magnetic stream function, andcurrent density, are solved iteratively using CSCM for the spatial discretisation, and anunconditionally stable backward difference scheme for the time integration. The inducedmagnetic field is obtained by means of its relation to the magnetic stream function. Thebehaviours of the flow and the heat transfer are investigated for varying values of Reynolds(Re), magnetic Reynolds (Rem), Rayleigh (Ra) and Hartmann (Ha) numbers.
___
- [1] Ece, M. C., Büyük, E. 2007. FEM solution of natural
convection flow in square enclosures under magnetic
field., Meccanica, 42, 435-449.
- [2] Colaço, M. J., Dulikravich, G. S., Orlande, H.R.B.
2009. Magnetohydrodynamic simulations using radial
basis functions. International Journal of Heat and Mass
Transfer, 52, 5932-5939.
- [3] Mramor, K., Vertnik, R., Sˇarler, B. 2013. Simulation
of Natural Convection Influenced by Magnetic Field
with Explicit Local Radial Basis Function Collocation
Method. CMES: Computer Modeling in Engineering
& Sciences, 92, 327-352.
- [4] Oztop, H. F., Al-Salem, K., Pop, I. 2011. MHD Mixed
Convection in a Lid-driven Cavity with Corner Heater.
International Journal of Heat and Mass Transfer, 54,
3494-3504.
- [5] Al-Salem, K., Öztop, H. F., Pop, I., Varol, Y. 2011.
Effects of moving lid direction on MHD mixed convection
in a linearly heated cavity. International Journal
of Heat and Mass Transfer, 55, 1103-1112.
- [6] Türk, Ö., Tezer-Sezgin, M. 2013. Natural convection
flow under a magnetic field in an inclined square
enclosure differentialy heated on adjacent walls. International
Journal of Numerical Methods for Heat &
Fluid Flow, 23, 844-866.
- [7] Sarris, I. E., Zikos, G. K., Grecos, A. P., Vlachos, N. S.
2006. On the Limits of Validity of the Low Magnetic
Reynolds Number Approximation in MHD Natural
Convection Heat Transfer. Numerical Heat Transfer,
Part B: Fundamentals, 50, 157-180.
- [8] ¸ Sentürk, K., Tessarotto, M., Aslan, N. 2009. Numerical
solutions of liquid metal flows by incompressible
magneto-hydrodynamics with heat transfer. International
Journal for Numerical Methods in Fluids,
60(2009), 1200-1221.
- [9] Bozkaya, N., Tezer-Sezgin, M. 2011. The DRBEM
solution of incompressible MHD flow equations. International
Journal for Numerical Methods in Fluids,
67, 1264-1282.
- [10] Codina, R., Hernández, N. 2011. Approximation of
the Thermally Coupled MHD Problem Using a Stabilized
Finite Element Method. Journal of Computational
Physics, 230, 1281-1303.
- [11] Pekmen, B., Tezer-Sezgin, M. 2015. DRBEM Solution
of MHD Flow with Magnetic Induction and Heat
Transfer. CMES: Computer Modeling in Engineering
& Sciences, 105, 183-207.
- [12] Sivakumar, R., Vimala S., Sekhar, T. V. S. 2015. Influence
of Induced Magnetic Field on Thermal MHD
Flow. Numerical Heat Transfer, Part A: Applications,
68, 797-811.
- [13] Selimli, S., Recebli, Z. 2018. Impact of electrical
and magnetic field on cooling process of liquid metal
duct magnetohydrodynamic flow. Thermal Science,
22, 263-271.
- [14] Ha, M. Y., Kim, I. K., Yoon, H. S., Yoon, K. S.,
Lee, J. R., Balachandar, S., Chun, H. H. 2002. Twodimensional
and unsteady natural convection in a horizontal
enclosure with a square body. Numerical Heat
Transfer, Part A: Applications, 41, 183-210.
- [15] Davidson, P. A. 2001. An Introduction to Magnetohydrodynamics.
Cambridge University Press, Cambridge.
- [16] Yu, P. X., Tian, Z. F., Ying A. Y., Abdou, M. A.
2017. Stream function-velocity-magnetic induction
compact difference method for the 2D steady incompressible
full magnetohydrodynamic equations. Computer
Physics Communications, 219, 45-69.
- [17] Hu, K., Ma, Y., Xu, J. 2017. Stable finite element
methods preserving ÑB=0 exactly for MHD models.
Numerische Mathematik, 135, 371-396.
- [18] Brackbill, J. U., Barnes, D. C. 1980. The Effect of
Nonzero ÑB on the numerical solution of the magnetohydrodynamic
equations . Journal of Computational
Physics, 35, 426-430.
- [19] Salah, N. B., Soulaimani, A., Habashi, A. 2001.
A finite element method for magnetohydrodynamics.
Computer Methods in Applied Mechanics and Engineering,
190, 5867-5892.
- [20] Gottlieb, D., Orszag, S. A. 1977. Numerical Analysis
of Spectral Methods: Theory and Applications. SIAM,
Philadelphia.
- [21] Boyd, J. P. 2000. Chebyshev and Fourier Spectral
Methods. Dover, New York.
- [22] Trefethen, L. N. 2000. Spectral Methods in Matlab.
SIAM, Philadelphia.
- [23] Botella, O., Peyret, R. 1998. Computing singular
solutions of the Navier-Stokes equations with the
Chebyshev-collocation method. International Journal
for Numerical Methods in Fluids, 36, 125-163.
- [24] Botella, O., Peyret, R. 2001. Benchmark Spectral
Results on the Lid-Driven Cavity Flow. Computers &
Fluids, 27(4), 421-433.
- [25] Peyret, R. 2002. Spectral Methods for Incompressible
Viscous Flow. Springer-Verlag, New York.
- [26] Heinrichs, W., Kattelans, T. 2008. A direct solver
for the least-squares spectral collocation system on
rectangular elements for the incompressible Navier-
Stokes equations . Journal of Computational Physics,
227(9), 4776-4796.
- [27] Auteri, F., Quartapelle, Vigevano, L. 2002. Accurate
w ?y Spectral Solution of the Singular Driven Cavity
Problem. Journal of Computational Physics, 180, 597-
615.