İndiyum Kalay Oksit Üzerinde Kendiliğinden Organize Tek Tabaka Tekniği ile Polifluoren Tabanlı Organik Işık Yayan Diyotun Taşıyıcı Mobilitesinin Geliştirilmesi

Hole taşıma malzemesi olarak işlev gören bir organik bileşik (1'-4-iyodofenil) trihidroksisilan (OH-IPhSi) sentezlendi ve indiyum kalay oksit (ITO) anodu üzerinde kendinden organize tek tabaka (KOT) olarak kaplandı. Bir KOT katmanının, bir organik ışık yayan diyot (Organik LED) üzerindeki etkisini araştırmak için, tipik bir Organik LED cihazı (ITO / OH-IPhSi / polimer / LiF / Al) yapılmıştır. KOT ile modifiye edilmiş cihaz, çıplak ITO cihazından daha yüksek bir mobilite göstermiştir. Bunun yanı sıra, yüklerin mobilite özelliklerinin, polifloren (PFO) polimer Organik LED cihazları için space charge limitli akım (SCLC) tekniği kullanılarak hesaplanmıştır.

Enhancing Carrier Mobility in Organic Light Emitting Diode Based Polyfluorene by Self-Assembled Monolayers Technique on Indium Tin Oxide

An organic compound (1'-4-iodophenyl) trihidroxysilane (OH-IPhSi) functionalized as hole transporting material was synthesized and used as interface self-assembled monolayers (SAM) on ITO film. To analyze the effect of a SAM layers on the characteristics an organic light emitting diode (Organic LED), a typical Organic LED device (ITO/OH-IPhSi/polymer/LiF/Al) was fabricated. The SAM-treatment ITO device performed a higher mobility than the bare ITO device. The carrier mobility properties were calculated by space-charge-limited current measurements (SCLC) technique for polyfluorene (PFO) polymer Organic LED devices.

___

  • [1] Facchetti, A., 2010. π-Conjugated polymers for organic electronics and photovoltaic cell applications. Chemistry of Materials, 23 (2010), 733-758.
  • [2] Meena, J. S., Sze, S. M., Chand, U., Tseng, T.-Y., 2014. Overview of emerging nonvolatile memory technologies. Nanoscale research letters, 9 (2014), 526.
  • [3] Yağmurcukardeş, N., Characterization of modified ito anode surfaces with 4 [3-methylphenyl) phenyl) anino] benzoic acid for oled applications, in, İzmir Institute of Technology, 2011.
  • [4] Cochrane, C., Meunier, L., Kelly, F. M., Koncar, V., 2011. Flexible displays for smart clothing: Part I—Overview. (2011).
  • [5] Ma, H., Yip, H. L., Huang, F., Jen, A. K. Y., 2010. Interface engineering for organic electronics. Advanced Functional Materials, 20 (2010), 1371-1388.
  • [6] Choy, W. C., Zhang, D., 2016. Solution‐Processed Metal Oxides as Efficient Carrier Transport Layers for Organic Photovoltaics. Small, 12 (2016), 416-431.
  • [7] Stranks, S. D., Snaith, H. J., 2015. Metal-halide perovskites for photovoltaic and light-emitting devices. Nature nanotechnology, 10 (2015), 391.
  • [8] Su, H.-C., Hsu, J.-H., 2015. Improving the carrier balance of light-emitting electrochemical cells based on ionic transition metal complexes. Dalton Transactions, 44 (2015), 8330-8345.
  • [9] Baldo, M., Thompson, M., Forrest, S., 2000. High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer. Nature, 403 (2000), 750.
  • [10] Jiang, Y., Oh, N., Shim, M., 2016. Double-heterojunction nanorod light-emitting diodes with high efficiencies at high brightness using self-assembled monolayers. ACS Photonics, 3 (2016), 1862-1868.
  • [11] Blom, P. W., De Jong, M., Vleggaar, J., 1996. Electron and hole transport in poly (p‐phenylene vinylene) devices. Applied Physics Letters, 68 (1996), 3308-3310.
  • [12] Bozano, L., Carter, S., Scott, J., Malliaras, G., Brock, P., 1999. Temperature-and field-dependent electron and hole mobilities in polymer light-emitting diodes. Applied Physics Letters, 74 (1999), 1132-1134.
  • [13] Heeger, A. J., Parker, I., Yang, Y., 1994. Carrier injection into semiconducting polymers: Fowler-Nordheim field-emission tunneling. Synthetic Metals, 67 (1994), 23-29.
  • [14] Malliaras, G., Salem, J., Brock, P., Scott, C., 1998. Electrical characteristics and efficiency of single-layer organic light-emitting diodes. Physical Review B, 58 (1998), R13411.
  • [15] Malliaras, G., Scott, J., 1999. Numerical simulations of the electrical characteristics and the efficiencies of single-layer organic light emitting diodes. Journal of Applied Physics, 85 (1999), 7426-7432.
  • [16] Yasuda, T., Yamaguchi, Y., Zou, D.-C., Tsutsui, T., 2002. Carrier mobilities in organic electron transport materials determined from space charge limited current. Japanese journal of applied physics, 41 (2002), 5626.
  • [17] Huh, D. H., Kim, G. W., Kim, G. H., Kulshreshtha, C., Kwon, J. H., 2013. High hole mobility hole transport material for organic light-emitting devices. Synthetic Metals, 180 (2013), 79-84.
  • [18] Kabra, D., Lu, L. P., Song, M. H., Snaith, H. J., Friend, R. H., 2010. Efficient Single‐Layer Polymer Light‐Emitting Diodes. Advanced Materials, 22 (2010), 3194-3198.
  • [19] Staudigel, J., Stössel, M., Steuber, F., Simmerer, J., 1999. Comparison of mobility and hole current activation energy in the space charge trap-limited regime in a starburst amine. Applied Physics Letters, 75 (1999), 217-219.
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-7688
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1995
  • Yayıncı: Süleyman Demirel Üniversitesi