Geri Seken Malzeme İle Üretilmiş Parke Taşlarının Çekme Dayanımlarının Yapay Sinir Ağları Yöntemi İle Tahmin Edilmesi

Günümüz bilgisayar teknolojisindeki gelişmelere paralel olarak gelişen sayısal yöntemler, deney sonuçlarının tahmininde yaygın olarak kullanılmaktadır. Bunlardan biri de yapay zeka yöntemlerinden yapay sinir ağlarıdır. Bu çalışmada, geri seken malzeme ile üretilen parke taşlarının çekme dayanımı değerlerini YSA yöntemi ile tahmin edebilmek için bir model geliştirilmiştir. Çalışmada, parke taşlarının çekme dayanımlarının belirlenebilmesi için püskürtme beton uygulaması esnasında geri seken malzeme kullanılarak 29 adet parke taşı numunesi üretilmiştir. Üretilen parke taşı numunelerine aşınma deneyleri yapılmıştır. Çekme dayanımı değerlerini tahmin edebilmek için geliştirilen YSA modelinin performansı, korelasyon katsayısı ve ortalama mutlak hata değerlerine göre değerlendirilmiştir. Sonuç olarak, geliştirilen YSA modelinin performansı değerlendirildiğinde, YSA yaklaşımının parke taşlarının çekme dayanımında kullanılabileceği görülmüştür.

Prediction of Tensile Strength of Paving Stone Produced by Rebound Materials Using Artificial Neural Network Method

In today numerical methods developing parallel with the development of computer technology widely used in the estimation of test results. One these methods Artificial Neural Networks (ANN), which is a sub-branch of artificial intelligence method. In this study, tensile strength values of paving stone produced by rebound material was developed a model to predict using ANN. In study, 29 unit paving stone samples were produced using the rebound material during shotcrete applications in order to determine the tensile strength of the paving stone. On the produced paving stone samples were made abrasion resistance tests. The performance of the developed ANN model to predict the values of tensile strength was evaluated by the correlation coefficient and average absolute error values.As a result, when evaluating the performance of the ANN model developed, has been shown usable in the tensile strength of the paving stones of ANN approach.

___

  • Albayrak, S., Çavdar, A., ve Bingöl, Ş., 2013. Beton Basınç Dayanımının Yapay Sinir Ağları İle Tahmini, http://e-arsiv.gumushane.edu.tr/xmlui/handle/ 123456789/245, iseaia 2013, KKTC. Erişim Tarihi: 02.01.2015.
  • Ashrafi, H.R., Jalal, M. ve Garmsiri, K., 2010. Prediction of Load–Displacement Curve of Concrete Reinforced by Composite Fibers (Steel and Polymeric) Using Artificial Neural Network, Expert Systems with Applications 37 (2010), 7663–7668pp.
  • Bal, L. ve Buyle-Bodin, F., 2013. Artificial Neural Network for Predicting Drying Shrinkage of Concrete, Construction and Building Materials 38 (2013), 248– 254pp.
  • Bilim, C., Atiş, C.D., Tanyıldızı, H., ve Karahan, O., 2009. Predicting The Compressive Strength of Ground Granulated Blast Furnace Slag Concrete Using Artificial Neural Network, Advances in Engineering Software 40 (2009), 334–340pp.
  • Çakıroğlu, M.A., Terzi, S., ve Çakıroğlu, M.G., 2009. Püskürtme Betonda Görülen Problemler, Yapı Teknolojileri Elektronik Dergisi, Teknolojik Araştırmalar, (5)2, 43-49.
  • Çankaya, G., Arslan, H.M. ve Ceylan, M., 2013. Görüntü İşleme ve Yapay Sinir Ağları Yöntemleri İle Betonun Basınç Dayanımının Belirlenmesi, Selçuk Üniversitesi Mühendislik Bilim ve Teknoloji Dergisi (1) 1s., ISSN: 2147-9364 (Elektronik).
  • Deshpande, N., Londhe, S.,ve Kulkarni, S., 2014. Modeling Compressive Strength of Recycled Aggregate Concrete by Artificial Neural Network, Model Tree and Non-linear Regression, International Journal of Sustainable Built Environment (2014) 3, 187–198pp.
  • Duan, Z.H., Kou, S.C., ve Poon, C.S., 2013. Using Artificial Neural Networks for Predicting The Elastic Modulus of Recycled Aggregate Concrete, Construction and Building Materials 44 (2013) 524– 532pp.
  • Elshafey, A.A., Dawood,N., Marzouk, H.,ve Haddara, M., 2013. Predicting of Crack Spacing for Concrete by Using Neural Networks, Engineering Failure Analysis 31 (2013) 344–359pp.
  • Kewalramani, M.A. ve Gupta, R., 2006. Concrete Compressive Strength Prediction Using Ultrasonic Pulse Velocity Through Artificial Neural Networks, Automation in Construction 15 (2006) 374 – 379pp.
  • Lee, S. ve Lee, C., 2014. Prediction of Shear Strength of FRP-Reinforced Concrete Flexural Members Without Stirrups Using Artificial Neural Networks, Engineering Structures 61 (2014) 99–112pp.
  • Morova, N. ve Terzi, S. 2011. NWSA, e-Journal of New World Sciences Academy 2011, Volume: 6, Number: 1, Article Number: 1A0170, ISSN : 1308-7231, 486- 496s.
  • Özturan, T., 2013. Özel Betonlar, BETON 2013, Hazır Beton Kongresi Çağrılı Bildirileri, 21-23 Şubat 2013, İstanbul.
  • Parichatprecha, R. ve Nimityongskul, P., 2009. Analysis of Durability of High Performance Concrete Using Artificial Neural Networks, Construction and Building Materials 23 (2009) 910–917pp.
  • Subaşı, S., Beycioğlu, A., ve Emiroğlu, M., 2009. Beton Mekanik Özelliklerinin Taze Beton Özelliklerinden Yararlanılarak Yapay Sinir Ağları İle Tahmini, Eskişehir Osmangazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, (22)3, 147-155 s.
  • Terzi, Ö., ve Keskin, M.E., 2005. Yapay Sinir Ağları Yaklaşımı Kullanılarak Günlük Tava Buharlaşması Tahmini, Teknik Dergi, 16 (4), 3683-3693.
  • Topçu, B.İ., Uygunoğlu, T. ve İnce, H.H., 2010. Hafif Beton Basınç Dayanımının Yapay Sinir Ağlarıyla Tahmini, Yapı Teknolojileri Elektronik Dergisi, (6)1, 19-29s., e-ISSN:1305-631X.
  • Topçu, İ.B. ve Sarıdemir, M., 2008. Prediction of Mechanical Properties of Recycled Aggregate Concretes Containing Silica Fume Using Artificial Neural Networks and Fuzzy Logic, ScienceDirect, Computational Materials Science 42 (2008) 74–82pp.
  • TS 2824 EN 1338, 2005. Zemin Döşemesi için Beton Kaplama Blokları-Gerekli Şartlar ve Deney Metotları, Türk Standartları Enstitüsü, Ankara.
  • TÜBİTAK 111M335, 2013. Düzlem Dışı Yüklenen Yığma Yapıların Polipropilen Lifli Kuru Karışım Püskürtme Betonla Güçlendirilmesi, Proje No: 111M335, Proje Araştırmacıları: Çakıroğlu, A.M., Tekeli, H., ve İnce, G., Isparta.
  • Uygunoğlu, T., ve Yurtçu, Ş., 2006. Yapay Zeka Tekniklerinin İnşaat Mühendisliği Problemlerinde Kullanımı, Yapı Teknolojileri Elektronik Dergisi, Teknolojik Araştırmalar, ISSN:1305-631X, (1), 61- 70s.
  • Yaprak, H. ve Karacı, A., 2009. Polipropilen Lifli Betonların Yüksek Sıcaklık Sonrası Basınç Dayanımlarının Yapay Sinir Ağları ile Tahmini, International Journal of Engineering Research and Development, (1) 2.
  • Yadollahi, M.M., Demirboğa, R., Polat, R., Karagöl, F. ve Kaygusuz, M.A., 2011. Yapay Sinir Ağları Yöntemi İle Betonun Elastik ve Kayma Modüllerinin Bulunması, I. Ulusal Ege Kompozit Malzemeler Sempozyumu, İzmir.
  • Yıldız, S., Bölükbaş, ve Y, Keleştemur, O., 2011a. Cam Elyaf Katkılı Betonların Yarmada Çekme Dayanımlarının Yapay Sinir Ağları İle Tahmini, 6th International Advanced Technologies Symposium (IATS’11), 16-18 May 2011, 50-54 s., Elazığ.
  • Yıldız, T., Yıldız, S., Keleştemur, O., Bölükbaş, Y., ve Demirel, B., 2011b. Yapay Sinir Ağları İle Atık Mermer Tozu ve Cam Lif Katkılı Betonların Yarmada Çekme Dayanımlarının Tahmini, e-Journal of New World Sciences Academy, ISSN:1306-3111, Volume: 6, Number: 4, Article Number: 1A0256, 1498-1508s.
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-7688
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1995
  • Yayıncı: Süleyman Demirel Üniversitesi
Sayıdaki Diğer Makaleler

Tokat İli Patates ve Patlıcan Üretimi Yapılan Alanlarda Patatesböceği (Leptinotarsa decemlineata (Say, 1824)) (Coleoptera: Chrysomelidae)'nin Yayılışı, Doğal Düşmanları ve Popülasyon Değişimi

Zeynep UYGUN, İSMAİL KARACA

Keban Baraj Gölü (Elazığ)’nde Yaşayan Barbus grypus Heckel, 1843’de Otolit Büyüklüğü-Yaş İlişkisi

Mustafa DÜŞÜKCAN, Metin ÇALTA, Mücahit EROĞLU, Dursun ŞEN

Geri Seken Malzeme İle Üretilmiş Parke Taşlarının Çekme Dayanımlarının Yapay Sinir Ağları Yöntemi İle Tahmin Edilmesi

Melda Alkan ÇAKIROĞLU, Ozan ÇİMEN

Rize’deki Topraklardan İzole Edilen Bacillus Suşlarında Plazmit Kaynaklı Antibiyotik ve Ağır Metal Direnci

Elif SEVİM, Ali SEVİM

Güneş Enerjisinin Isıtma Amaçlı Mevsimlik Depolanması ve Isı Pompası Destekli Kullanımı

AHMET ÖZSOY

Flamingonun (Phoenicopterus roseus) Burdur Gölü'ndeki Beslenme Özellikleri

YUSUF AYVAZ, Rahman ÖZKOÇ, MEHMET ALİ TABUR

Güneş Enerjisinin Mevsimlik Depolanması ve Isı Pompası Destekli Kullanımı

Ahmet ÖZSOY

Eğirdir Gölü’nün (Türkiye) Su ve Sedimentinde Nitrit, Nitrat, Fosfat ve Florür Miktarlarının Belirlenmesi

İsmail KIR, Muhammed ERDOĞAN, Mehmet ENGİN

Plastik Enjeksiyon Kalıplarında PVC (Polivinil Klorür) ve PC (Polikarbonat) İçin En Uygun Kalıp Çeliği Seçimi

Hüseyin Veli DÖNDÜREN, Süleyman Serhat KARACASULU

Organik ve Konvansiyonel Yağ Gülü Rosa damascena Miller (Rosales: Rosaceae) Yetiştiriciliğinde Böcek Biyolojik Çeşitlilik Değerlerinin Hesaplanması

Özlem DİNÇ ORTAÇ, Bülent YAŞAR, Gökhan AYDIN