Farklı Metodlar ile Schamel-KdV denkleminin Analitik Çözümleri: Tozlu Uzay Plazmasına Uygulanması

Içerisinde negatif ve pozitif yüklü tozların yanında dagılmı¸s izotermal olmayan ˘ elektronlar barındıran tozlu uzay plazmasındaki dalganın özellikleri, Schamel-KdV denklemlerinin tam ilerleyen dalga çözümleri kullanılarak incelenmi¸stir. Analitik çözümler, (G ′/G)-geni¸sleme methodunun farklı tipleri ve direk integrasyon kullanılarak bulunmu¸stur. ˙Ion-akustik dalgasının lineer olmayan dinamigi, faz hızının ˘ Vp, plazma parametreleri α, σ, ve σd, ve kaynak terimi µ’nun farklı degerleri için çalı¸sılmı¸stır. Bunun sonu- ˘ cunda, farklı methodlardan elde edilen farklı analitik çözümler ile farklı türden dalgalar gözlemledik ve süreksiz, ¸sok veya soliton dalgası bulduk. Aynı zamanda, yukarıda verilen parametrelerin plazma içerisinde soliton tipi dalgaların olu¸smasında önemli bir rol oynadıgı sonucuna ula¸sılmı¸stır. Bu parametrelere ba ˘ glı olarak süreksiz dalga plazma ˘ parametrelerinin ve faz hızının belli degerleri için soliton tipi bir dalgaya donü¸sür. Bun- ˘ lara ek olarak, Schamel-KdV denkleminin tam analitik çözümleri, verilen bir plazmanın özelliklerinin ve dalga tiplerinin anla¸sılması için farklı plazma sistemlerine de uygulanabilir.

Analytic Solutions of the Schamel-KdV Equation by Using Different Methods: Application to a Dusty Space Plasma

The wave properties in a dusty space plasma consisting of positively and negatively charged dust as well as distributed nonisothermal electrons are investigated by using the exact traveling wave solutions of the Schamel-KdV equation. The analytic solutions are obtained by the different types (G ′/G)-expansion methods and direct integration. The nonlinear dynamics of ion-acoustic waves for the various values of phase speed Vp, plasma parameters α, σ, and σd, and the source term µ are studied. We have observed different types of waves from the different analytic solutions obtained from the different methods. Consequently, we have found the discontinuity, shock or solitary waves. It is also concluded that these parameters play an important role in the presence of solitary waves inside the plasma. Depending on plasma parameters, the discontinuity wave turns into solitary wave solution for the certain values of the phase speed and plasma parameters. Additionally, exact solutions of the Schamel-KdV equation may also be used to understand the wave types and properties in the different plasma systems.

___

  • Moslem, W.M., Sabry, R., Shukla, P.K. 2010. Three dimensional cylindrical KadomtsevPetviashvili equation in a very dense electronpositron-ion plasma. Phys. of Plas., 17, 032305.
  • Kalaawy, O.H., Ibrahim, R.S. 2008. Exact Solutions for nonlinear Propagation of slow ion acoustic monotonic double layers and a Solitary Hole in Semirelativistic Plasma. Phys. of Plas., 15, 072303.
  • Abdel, H.I., Tantawy, M. 2014. Exact Solutions of the Schamel-Korteweg-de Vries Equation with Time Dependent Coefficients. Information Sciences Letters, 3(3), 103-109.
  • Gill, T.S., Bedi, C., Saini, N.S. 2011. Higher order nonlinear effects on wave structures in a fourcomponent dusty plasma with nonisothermal electrons. Phys. of Plas., 18, 043701.
  • Daghan, D., Donmez, O. 2016. Exact Solutions of the Gardner Equation and their Applications to the Different Physical Plasmas. Brazilian Journal of Physics, 46, 321-333.
  • Demiray, S., Unsal, O., Bekir, A. 2015. Exact solutions of nonlinear wave equations using (G ′/G,1/G)-expansion method. Journal of the Egyptian Mathematical Society, 23(1), 78-84.
  • Zayed, E.M.E., Hoda Ibrahim, S.A., Abdelaziz, M.A.M. 2012. Traveling wave solutions of the nonlinear 3 + 1-dimensional Kadomtsev Petviashvili equation using the two variables (G ′/G,1/G)- expansion method. J. Appl. Math., 560531.
  • Zayed, E.M.E., Abdelaziz, M.A.M. 2013. The two variables (G ′/G,1/G)-expansion method for solving the nonlinear KdV mKdV equation. Math. Probl. Eng., 2012, 725061.
  • Li, L-X., Li, E.Q., Wang, M.L. 2010. The (G ′/G,1/G)-expansion method and its application to traveling wave solutions of the Zakharov equations. Appl. Math. A J. Chin. Univ., 25, 454-462.
  • Li, L-X., Wang, M.L. 2009. The (G ′/G)- Expansion Method and Traveling Wave Solutions for a Higher-Order Nonlinear Schrödinger Equation. Appl. Math. and Comput., 208(2), 440-445.
  • Daghan, D., Donmez, O. 2015. Investigating the effect of integration constants and various plasma parameters on the dynamics of the soliton in different physical plasmas. Phys. of Plas., 22, 072114.
  • Daghan, D., Yildiz, O., Toros, S. 2015. Comparison of (G ′/G)−methods for finding exact solutions of the Drinfeld-Sokolov system. Mathematica Slovaca, 65(3), 607-632.
  • Wang, M.L., Li, X., Zhang, J. 2008. The (G ′/G)- Expansion Method and Traveling Wave Solutions of Nonlinear Evolution Equations in Mathematical Phys. Phys. Lett. A., 372(4), 417-423.
  • Taha, W.M., Noorani, M.S.M., Hashim, I. 2013. New Exact Solutions of Ion-Acoustic Wave Equations by (G’/G)-Expansion Method. Journal of Applied Mathematics Volume, 810729.
  • Khater A.H., Hassan, M.M. 2011. Exact solutions expressible in hyperbolic and jacobi elliptic functions of some important equations of ion-acoustic waves. In Acoustic Waves-From Microdevices to Helioseismology.
  • Khater, A.H., Hassan, M.M, Krishnan, E.V., Peng, Y.Z. 2008. Applications of elliptic functions to ionacoustic plasma waves. Eur. Phys. J. D, 50, 177- 184.
  • Khater, A.H., Hassan, M.M., Temsah, R.S. 1998. Exact Solutions with Jacobi Elliptic Functions of Two Nonlinear Models for Ion-Acoustic Plasma Waves. J. Phys. Soc. Japan, 74, 1431-1435.
  • Hassan, M.M. 2004. Exact solitary wave solutions for a generalized KdVBurgers equation. Chaos, Solitons and Fractals, 19, 1201-1206.
  • Fu, Z.T., Liu, S.K., Liu, S.D., Zhao, Q. 2001. New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations. Phys. Lett. A, 290, 72-76.
  • Liu, S.K., Fu, Z.T., Liu, S.D., Zhao, Q. 2001. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A, 289, 69-74.
  • Daghan, D., Donmez, O. 2016. Analytic solutions and parametric studies of the Schamel equation for two different ion-acoustic waves in plasmas. Submitted to the Journal.
  • Daghan, D., Donmez, O., Tuna, A. 2010. Explicit solutions of the nonlinear partial differential equations. Nonlinear Anal.: Real World App., 11(3), 2152-2163.
  • Schamel, H. 1973. A modified Korteweg-de Vries equation for ion-acoustic waves due to resonant electrons. Journal of Plasma Physics, 9(3), 377- 387.
  • Schamel, H. 1972. Stationary Solitary, Snoidal and Sinusoidal ion-acoustic Waves. Plasma Phys., 14, 905-924.
  • Lee, J., Sakthivel, R. 2011. Exact traveling wave solutions of the Schamel-Korteweg-de Vries equation. Reports on Mathematical Physics, 68(2), 153- 161.
  • Hassan, M.M. 2010. New Exact Solutions of Two Nonlinear Physical Models. Commun. Theor. Phys. (Beijing, China), 53, 596-604.
  • Das, G.C., Tagare, S.G., Sarma, J. 1998. Quasipotential analysis for ion-acoustic solitary wave and double layers in plasmas. Planet. Space Sci., 46(4), 417.
  • Tagare, S.G., Chakrabarti, A. 1974. Solution of a generalized Korteweg-de Vries equation. Phys. Fluids, 17(1974), 1331.
  • Whitham, G.B. 1974. Linear and Nonlinear Waves, Pure and Applied Mathematics, John Wiley & Sons, New York, NY, USA.
  • Davidson, R.C. 1972. Methods in Nonlinear Plasma Theory. Academic Press, New York, NY, USA
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-7688
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1995
  • Yayıncı: Süleyman Demirel Üniversitesi
Sayıdaki Diğer Makaleler

Kiremit Atığı ve Kömür Uçucu Külü Karışımından Çatı Kiremiti Üretimi ve Karakterizasyonu

Aysel KANTÜRK FİGEN, Sabriye PİŞKİN, Ünal ÖZÇAY

Sol‐Jel ile Sentezlenmis Er3+:Y2Si2O7 Nanofosforların Spektroskopik Özellikleri Üzerinde Konsantrasyon ve Faz Etkileri

Murat ERDEM, Hümeyra ÖRÜCÜ

Kızılçam Ormanları Hasat Artıklarından Yapılan Odun Peletinin Yakıt Özelliklerinin Belirlenmesi

TÜRKAY TÜRKOĞLU, Cesur GÖKOĞLU

Ceratium hirundinella Kist ve Vejetatif Hücrelerinin İki Baraj Gölünde Dağılım Dinamikleri, Türkiye

Elif TEZEL ERSANLI, Seda HASIRCI MUSTAK

Design and Implementation of an User Centric M‐Healthcare System for Patients

PINAR KIRCI, Uğur ALAN, Vahap BIYIK, Zeynel A SAMAK

Structural Modelling and Structure‐Function Analysis of Zymomonas mobilis Levansucrase

Bahar BAKAR, BURCU KAPLAN TÜRKÖZ

Demineralizasyon İşleminin Linyitlerin CO2 ile Gazlaştırılmasına Etkisi

Pınar ACAR BOZKURT, Zarife MISIRLIOĞLU, Sibel KOÇ, Muammer CANEL

Isıl Muamelenin Kalsiyum Sülfat Bazlı İskelelerin Fiziksel, Kimyasal ve Yapısal Özellikleri Üzerine Etkisi

Hakan OFLAZ, Serkan DİKİCİ, Betül ALDEMİR DİKİCİ

Dereceli ve Derecesiz InXGa1‐XN Güneş Hücresi Yapılarındaki Mozaik Kusurların Analizi

İlknur KARS DURUKAN, Ekmel ÖZBAY, Mustafa Kemal ÖZTÜRK, Süleyman ÖZÇELİK

ndirgenmiş Grafen Oksit/α‐Siklodekstrin Esaslı Elektrokimyasal Sensör: Karakterizasyon ve Adenin, Guanin ve Timinin Eşzamanlı Tayini

Erhan ZOR