Electrochemical sensing and fluorescence imaging of E. coli O157:H7 based on aptamerconjugated semiconducting nanoparticles

Aptamers are selective molecules against to various sizes of targets from small molecules to mammalian cells. Here, we reported QDs containing electrochemical aptasensor for the detection of E. coli O157:H7. The electrode surfaces were modified by cysteamine (CysN), which has amine and thiol groups, via self-assembled monolayer formation. The carboxyl-functionalized quantum dots (QD) and aptamers (Apt) were conjugated to cysteamine modified gold electrodes. Linear range for E. coli O157:H7 was from 1 to 102 CFU/mL after incubation on CysN/QD/Apt modified Au surfaces. QDs provide fluorescence surface, so that adhesion of cells was followed using fluorescence microscope. Adhered cells were also imaged by scanning electron microscopy. Finally, cell analysis was carried out in real samples.

Aptamer konjuge edilmiş yarı iletken nanoparçacıkları temel alan patojen bir mikroorganizmanın elektrokimyasal belirlenmesi ve floresans görüntülenmesi

Aptamerler, küçük moleküllerden memeli hücrelerine kadar çeşitli boyutlardaki hedeflere karşı seçici moleküllerdir. Burada, E. coli O157:H7 dedeksiyonu için QD içeren elektrokimyasal aptasensör rapor edilmiştir. Yüzeyler, amino ve tiyol grupları içeren sisteamin (CysN) ile kendiliğinden oluşan tek tabaka meydana gelişi ile modifiye edildi. Karboksil ile fonksiyonelleştirilen quantum noktalar (QD) ve aptamerler (Apt), sisteaminle modifiye edilmiş altın elektrotlara konjuge edildi. CysN/QD/Apt modifiye edilen Au yüzeylerde inkübasyon sorasında, E. coli O157:H7 için doğrusal aralık 1 to 102 CFU/mL idi. QD floresans yüzeyler sağlar, böylece hücrelerin adezyonu floresans mikroskop kullanılarak takip edildi. Adezyon sonrası hücreler aynı zamanda taramalı electron mikroskobu ile görüntülendi. Son olarak, hücre analizi gerçek örneklerde gerçekleştirildi.

___

[1] Tuerk, C., Gold, L., 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 249(4968), pp.505-510.

[2] Ellington, A.D., Szostak, J.W., 1990. In vitro selection of RNA molecules that bind specific ligands. nature, 346(6287), p.818.

[3] Bayrac, A. T., Kandemir, B. B. 2018 Domuz Jelatinine Özgü DNA Aptamerlerinin Seçilimi ve Karakterizasyonu, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 774-778.

[4] Yang, K.A., Barbu, M., Halim, M., Pallavi, P., Kim, B., Kolpashchikov, D.M., Pecic, S., Taylor, S., Worgall, T.S., Stojanovic, M.N., 2014. Recognition and sensing of low-epitope targets via ternary complexes with oligonucleotides and synthetic receptors. Nature chemistry, 6(11), p.1003. –1008.

[5] Baker, B.R., Lai, R.Y., Wood, M.S., Doctor, E.H., Heeger, A.J., Plaxco, K.W., 2006. An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. Journal of the American Chemical Society, 128(10), pp.3138-3139..

[6] Hamula, C.L., Zhang, H., Guan, L.L., Li, X.F., Le, X.C., 2008. Selection of aptamers against live bacterial cells. Analytical chemistry, 80(20), pp.7812-7819.

[7] Bayrac, A.T., Sefah, K., Parekh, P., Bayrac, C., Gulbakan, B., Oktem, H.A. and Tan, W., 2011. In vitro selection of DNA aptamers to glioblastoma multiforme. ACS chemical neuroscience, 2(3), pp.175-181.

[8] Torres-Chavolla, E., Alocilja, E.C., 2009. Aptasensors for detection of microbial and viral pathogens. Biosensors and bioelectronics, 24(11), pp.3175-3182.

[9] Wu, S., Duan, N., Shi, Z., Fang, C., Wang, Z., 2014. Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels. Analytical chemistry, 86(6), pp.3100-3107.

[10] Sekhon, S.S., Kim, S.G., Lee, S.H., Jang, A., Min, J., Ahn, J.Y., Kim, Y.H., 2013. Advances in pathogenassociated molecules detection using Aptamer based biosensors. Molecular & Cellular Toxicology, 9(4), pp.311-317.

[11] Hianik, T., Wang, J., 2009. Electrochemical aptasensors–recent achievements and perspectives. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 21(11), pp.1223- 1235.

[12] Balamurugan, S., Obubuafo, A., Soper, S.A., Spivak, D.A., 2008. Surface immobilization methods for aptamer diagnostic applications. Analytical and bioanalytical chemistry, 390(4), pp.1009-1021.

[13] Li, B., Du, Y., Wei, H. and Dong, S., 2007. Reusable, label-free electrochemical aptasensor for sensitive detection of small molecules. Chemical Communications, (36), pp.3780-3782.

[14] Lim, Y.C., Kouzani, A.Z., Duan, W., 2010. Aptasensors: a review. Journal of biomedical nanotechnology, 6(2), pp.93-105.

[15] Wang, L., Liu, Q., Hu, Z., Zhang, Y., Wu, C., Yang, M., Wang, P., 2009. A novel electrochemical biosensor based on dynamic polymeraseextending hybridization for E. coli O157: H7 DNA detection. Talanta, 78(3), pp.647-652.

[16] Pandey, C.M., Singh, R., Sumana, G., Pandey, M.K., Malhotra, B.D., 2011. Electrochemical genosensor based on modified octadecanethiol self-assembled monolayer for Escherichia coli detection. Sensors and Actuators B: Chemical, 151(2), pp.333-340.

[17] Food and Drug Administration, 1998. FDA/CFSAN Bad Bug Book. Rockville, MD, USA. [18] Burtscher, C., Wuertz, S., 2003. Evaluation of the use of PCR and reverse transcriptase PCR for detection of pathogenic bacteria in biosolids from anaerobic digestors and aerobic composters. Applied and environmental microbiology, 69(8), pp.4618-4627.

[19] Allen, M.J., Edberg, S.C., Reasoner, D.J., 2004. Heterotrophic plate count bacteria—what is their significance in drinking water?. International journal of food microbiology, 92(3), pp.265-274.

[20] V Van Dyck, E., Ieven, M., Pattyn, S., Van Damme, L., Laga, M., 2001. Detection of Chlamydia trachomatis and Neisseria gonorrhoeae by Enzyme Immunoassay, Culture, and Three Nucleic Acid Amplification Tests. Journal of clinical microbiology, 39(5), pp.1751-1756.

[21] Regnault, B., Martin-Delautre, S., Lejay-Collin, M., LefŔvre, M., Grimont, P.A., 2000. Oligonucleotide probe for the visualization of Escherichiacoli/Escherichia fergusonii cells by in situ hybridization: specificity and potential applications. Research in microbiology, 151(7), pp.521-533.

[22] Skottrup, P.D., Nicolaisen, M., Justesen, A.F., 2008. Towards on-site pathogen detection using antibody-based sensors. Biosensors and Bioelectronics, 24(3), pp.339-348.

[23] Ag, D., Bongartz, R., Dogan, L.E., Seleci, M., Walter, J.G., Demirkol, D.O., Stahl, F., Ozcelik, S., Timur, S., Scheper, T., 2014. Biofunctional quantum dots as fluorescence probe for cellspecific targeting. Colloids and Surfaces B: Biointerfaces, 114, pp.96-103.

[24] Bruno, J.G., Carrillo, M.P., Phillips, T., Andrews, C.J., 2010. A novel screening method for competitive FRET-aptamers applied to E. coli assay development. Journal of fluorescence, 20(6), pp.1211-1223.

[25] Uygun, M., Kahveci, M.U., Odaci, D., Timur, S., Yagci, Y., 2009. Antibacterial acrylamide hydrogels containing silver nanoparticles by simultaneous photoinduced free radical polymerization and electron transfer processes. Macromolecular Chemistry and Physics, 210(21), pp.1867-1875.

[26] Guler, E., Soyleyici, H.C., Demirkol, D.O., Ak, M., Timur, S., 2014. A novel functional conducting polymer as an immobilization platform. Materials Science and Engineering: C, 40, pp.148-156.

[27] Carrillo-Carrión, C., Simonet, B.M., Valcárcel, M., 2011. Colistin-functionalised CdSe/ZnS quantum dots as fluorescent probe for the rapid detection of Escherichia coli. Biosensors and Bioelectronics, 26(11), pp.4368-4374.

[28] Dos Santos, M.B., Agusil, J.P., Prieto-Simón, B., Sporer, C., Teixeira, V., Samitier, J., 2013. Highly sensitive detection of pathogen Escherichia coli O157: H7 by electrochemical impedance spectroscopy. Biosensors and Bioelectronics, 45, pp.174-180.
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-7688
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1995
  • Yayıncı: Süleyman Demirel Üniversitesi