Doğrudan Metanol Alkali Yakıt Hücresi Uygulamaları İçin Çapraz Bağlama Yönteminin Membran Performansı Üzerine Etkisi

Bu çalışmada poli (vinil alkol) (PVA) esaslı anyon değişim membranlar (AEM) iki farklı çapraz bağlama tekniği ile hazırlanmış ve ısıl ve kimyasal çapraz bağlama tekniklerinin uygulanma sırasının AEM’ın özellikleri üzerine etkisi incelenmiştir. Kimyasal çapraz bağlayıcı olarak en çok kullanılmakta olan glutaraldehit (GA) yerine poli(etilen glikol) diglisidil eter (PEGDGE) kullanılmıştır. Hazırlanan membranların yakıt hücresi ile ilgili özellikleri değerlendirildiğinde, çapraz bağlama tekniğinin ve farklı tekniklerin uygulama sırasının membranın özelliklerini etkilediği görülmüştür. Önce kimyasal sonra 150˚C’de ısıl çapraz bağlama uygulanarak hazırlanan membranın (PPP150) yüksek iyonik iletkenlik (47 mS/cm), membran seçimlilik (89 x104 S.s/cm3)  ve yeterli mekanik dayanıma sahip olduğu görülmüştür. Elde edilen sonuçlar, önce PEGDGE ile kimyasal, sonra ısıl olarak çapraz bağlanan PVA esaslı anyon değişim membranların Doğrudan Metanol Alkali Yakıt Hücresi (DMFC) uygulamaları için ümit veren membranlar olarak düşünülebileceğini göstermiştir.

The Effect of Cross-linking Technique on Membrane Performance for Direct Methanol Alkaline Fuel Cell Application

In this study, anion exchange membranes (AEM) based on poly(vinyl alcohol) (PVA) were prepared by two different cross-linking techniques and the effects of application sequence of thermal and chemical cross-linking technique on properties of AEM were investigated. Poly(ethylene glycol) diglycidly ether (PEGDGE) was used as a chemical cross-linking agent instead of the commonly used glutaraldehyde (GA). Evaluation of the fuel cell-related properties of the prepared membranes showed that the technique of cross-linking and the application sequence of techniques affected the properties of membranes. Promisingly, it was found that the membranes prepared by firstly chemical cross-linking and then thermal cross-linking at 150˚C (PPP150) exhibited high ionic conductivity (47 mS/cm), membrane selectivity values (89 x104 S.s/cm3) and sufficient mechanical strength. These encouraging results indicate that AEMs-based on PVA cross-linked by chemical technique with PEGDGE and then thermal technique may be considered as a promising membrane for Direct Methanol Alkaline Fuel Cell (DMFC) applications.

___

  • [1] Shevchenko, V.V., Gumennaya, M.A. 2010. Synthesis and properties of anion-exchange membranes for fuel cells. Theoritical and Experimental Chemistry, 46, 139–152.
  • [2] Merle, G., Hosseiny, S.S., Wessling, M., Nijmeijer, K. 2012. New cross-linked PVA based polymer electrolyte membranes for alkaline fuel cells. Journal of Membrane Science, 409–410, 191–199.
  • [3] Merle, G., Wessling, M., Nijmeijer, K. 2011. Anion exchange membranes for alkaline fuel cells: A review. Journal of Membrane Science, 377, 1–35.
  • [4] Kang, J.J., Li, W.Y., Lin, Y., Li, X.P., Xiao, X.R., Fang, S.B. 2004. Synthesis and ionic conductivity of a polysiloxane containing quaternary ammonium groups. Polymers for Advanced Technologies 15, 61–64.
  • [5] Fang, J., Shen, P.K. 2006. Quaternized poly(phthalazinon ether sulfone ketone) membrane for anion exchange membrane fuel cells. Journal of Membrane Science, 285, 317–322.
  • [6] Vassal, N., Salmon, E., Fauvarque, J.F. 2000. Electrochemical properties of an alkaline solid polymer electrolyte based on P(ECH-co-EO). Electrochimica Acta, 45, 1527–1532.
  • [7] Jheng, L., Hsu, S.L., Lin, B., Hsu, Y. 2014. Quaternized polybenzimidazoles with imidazolium cation moieties for anion exchange membrane fuel cells. Journa of Membrane Science, 460, 160–170.
  • [8] Qiao, J., Fu, J. , Lin, R., Ma, J., Liu, J. 2010. Alkaline solid polymer electrolyte membranes based on structurally modified PVA/PVP with improved alkali stability. Polymer, 51, 4850–4859. [9] Arı, G.A., Özcan, Z. 2016. A novel approach for stable anion exchange membrane: Self-assembled multilayer formation on the membrane via LbL method. Synthetic Metals, 220, 269-275.
  • [10] Zhang, J., Qiao, J., Jiang, G., Liu, L., Liu, Y. 2013. Cross-linked poly(vinyl alcohol)/poly (diallyldimethylammonium chloride) as anion-exchange membrane for fuel cell applications. Journal of Power Sources, 240, 359–367.
  • [11] Gümüşoĝlu, T., Ari, G.A., Deligöz, H. 2011. Investigation of salt addition and acid treatment effects on the transport properties of ionically cross-linked polyelectrolyte complex membranes based on chitosan and polyacrylic acid. Journal of Membrane Science, 376, 25-34.
  • [12] Svang-Ariyaskul, A., Huang, R.Y.M., Douglas, P.L., Pal, R., Feng, X., Chen, P., Liu, L. 2006. Blended chitosan and polyvinyl alcohol membranes for the pervaporation dehydration of isopropanol. Journal of Membrane Science, 280, 815–823.
  • [13] Jin, X., Li, L., Xu, R., Liu, Q., Ding, L., Pan, Y., Wang, C., Hung, W., Lee, K., Wang, T. 2018. Effects of thermal cross-linking on the structure and property of asymmetric membrane prepared from the polyacrylonitrile. Polymers (Basel), 10, 1–16.
  • [14] Xiong, Y., Fang, J., Zeng, Q.H., Liu, Q.L. 2008. Preparation and characterization of cross-linked quaternized poly(vinyl alcohol) membranes for anion exchange membrane fuel cells. Journal of Membrane Science, 311, 319–325.