Bazı Yeni 4-Klor Kalkon Bazlı Oksim Eterlerin İlk Sentezi: Bir Deneysel ve Hesapsal Çalışma

Bu çalışmada; bir seri yeni oksim eterler, 3-(4-klorfenil)-1-fenil-2-propen-1-on O-benzil oksimler, sentezlenmiş ve çeşitli spektroskopik yöntemlerle karakterize edilmiştir. Bildiğimiz kadarıyla bu, 3-(4-klorfenil)-1-fenilprop-2-en-1-on O-benzil oksimlerin ilk sentezidir. Bu çalışma iki kısımdan oluşmaktadır. Birinci kısımda seçilen bileşiklerin sentezleri ve karakterizasyonları gerçekleştirilmiştir. Çalışmamızın ikinci kısmında ise sentezlenen moleküller üzerinde bazı DFT (Yoğunluk Fonksiyonel Teorisi) hesaplamaları gerçekleştirilmiş ve elde edilen sonuçlar deneysel sonuçlarla karşılaştırılmıştır. Çalışmada; tek nokta enerji hesaplamaları, geometri optimizasyonları, frekans analizleri, NMR spektral analizleri, moleküler elektrostatik potansiyel haritası hesaplamaları, sınır moleküler orbital hesaplamaları, bazı global reaktivite tanımlayıcıların belirlenmesi ve Mulliken atomik yük hesaplamaları gerçekleştirilmiştir. Tüm DFT hesaplamaları B3LYP/6-31G(d), B3LYP/6-311G(d,p) ve B3LYP/6-311+G(2d,p) teori düzeylerinde gerçekleştirilmiştir

The First Synthesis of Some Novel 4-Chloro Chalcone Based Oxime Ethers: An Experimental and Computational Study

In this study; a series of novel oxime ethers, 3-(4-chlorophenyl)-1-phenyl-2-propen-1-one O-benzyl oximes, have been synthesized and characterized by several spectroscopic methods. To the best of our knowledge, this is the first synthesis of 3-(4-chlorophenyl)-1-phenyl-2-propen-1-one O-benzyl oximes. The study consists of two parts. In the first part, the synthesis and the characterization of the selected compounds have been carried out. In the second part of our study some DFT (Density Functional Theory) calculations have been performed on the synthesized molecules and the obtained results have been compared with the experimental results. In the study; single point energy calculations, geometry optimizations, frequency analysis, NMR spectral analysis, molecular electrostatic potential map calculations, frontier molecular orbital calculations, determination of some global reactivity descriptors and Mulliken atomic charge calculations have been performed. All DFT calculations were carried out at the B3LYP/6-31G(d), B3LYP/6-311G(d,p) and B3LYP/6-311+G(2d,p) level of theories

___

  • [1] Siddiqui, Z. N., Asad, M., Praveen, S. 2008. Synthesis and biological activity of heterocycles from chalcone. Medicinal Chemistry Research, 17, 318-325.
  • [2] Krishnakumar, B., Velmurugan, R., Swaminathan, M. 2011. TiO2-SO42- as a novel solid acid catalyst for highly efficient, solvent free and easy synthesis of chalcones under microwave irradiation. Catalysis Communications, 12, 375- 379.
  • [3] Dimmock, J. R., Elias, D. W., Beazely, M. A., Kandepu, N. M. 1999. Bioactivities of chalcones. Current Medicinal Chemistry, 6, 1125-1149.
  • [4] Xia, Y., Yang, Z. Y., Xia, P., Bastow, K. F., Nakanishi, Y., Lee, K. H. 2000. Antitumor agents. Part 202: novel 2'-amino chalcones: design, synthesis and biological evaluation. Bioorganic & Medicinal Chemistry Letters, 10, 699-701.
  • [5] Liu, M., Wilairat, P., Go, M. L. 2001. Antimalarial alkoxylated and hydroxylated chalcones: structure:activity relationship analysis. Journal of Medicinal Chemistry, 44, 4443-4452.
  • [6] Dominguez, J. N., Charris, J. E., Lobo, G., de Dominguez, N. G., Moreno, M. M., Riggione, F., Sanchez, E., Olson, J., Rosenthal, P. J. 2001. Synthesis of quinolinyl chalcones and evaluation of their antimalarial activity. European Journal of Medicinal Chemistry, 36, 555-560.
  • [7] Ram, V. J., Saxena, A. S., Srivastava, S., Chandra, S. 2000. Oxygenated chalcones and bischalcones as potential antimalarial agents. Bioorganic & Medicinal Chemistry Letters, 10, 2159-2161.
  • [8] Herencia, F., Ferrandiz, M. L., Ubeda, A., Dominguez, J. N., Charris, J. E., Lobo, G. M., Alcaraz, M. J. 1998. Synthesis and anti- imflammatory activity of chalcone derivatives. Bioorganic & Medicinal Chemistry Letters, 8, 1169-1174.
  • [9] Lin, Y. M., Zhou, Y. S., Flavin, M. T., Zhou, L. M., Nie, W. G., Chen, F. C. 2002. Chalcones and flavonoids as anti-tuberculosis agents. Bioorganic & Medicinal Chemistry, 10, 2795- 2802.
  • [10] Satyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. K., Pratap, R. 2004. Synthesis and antihyperglycemic activity of chalcone based aryloxypropanolamines. Bioorganic & Medicinal Chemistry, 12, 883-889.
  • [11] Ducki, S., Forrest, R., Hadfield, J. A., Kendall, A., Lawrence, N. J., McGown, A. T., Rennison, D. 1998. Potent antimitotic and cell growth inhibitory properties of substituted chalcones. Bioorganic & Medicinal Chemistry Letters, 8, 1051-1056.
  • [12] Xu, X. Y., Li, J. T., Du, C., Song, Y. L. 2011. Improved Synthesis of 1,3-Diaryl-2-propen-1- one Oxime in the Presence of Anhydrous Sodium Sulfate. Chinese Journal of Chemistry, 29, 2781- 2784.
  • [13] Luo, Y., Song, R., Li, Y., Zhang, S., Liu, Z.-J., Fu, J., Zhu, H.-L. 2012. Design, synthesis, and biological evaluation of chalcone oxime derivatives as potential immunosuppressive agents. Bioorganic & Medicinal Chemistry Letters, 22, 3039-3043.
  • [14] Wang, Y.-T., Qin, Y.-J., Zhang, Y.-L., Li, Y.-J., Rao, B., Zhang, Y.-Q., Yang, M.-R., Jiang, A.-Q., Qi, J.-L., Zhu, H.-L. 2014. Synthesis, biological evaluation, and molecular docking studies of novel chalcone oxime derivatives as potential tubulin polymerization inhibitors. Rsc Advances, 4, 32263-32275.
  • [15] Chang, M.-Y., Chen, Y.-C., Chan, C.-K. 2014. One- pot synthesis of multifunctionalized cyclopropanes. Tetrahedron, 70, 2257-2263.
  • [16] Sinisterra, J. V., Garciaraso, A., Cabello, J. A, Marinas, J. M. 1984. An improved procedure for the Claisen-Schmidt reaction. Synthesis- Stuttgart, 502-504.
  • [17] Sebti, S., Solhy, A., Tahir, R., Boulaajaj, S., Mayoral, J. A., Fraile, J. M., Kossir, A., Oumimoun, H. 2001. Calcined sodium nitrate/natural phosphate: an extremely active catalyst for the easy synthesis of chalcones in heterogeneous media. Tetrahedron Letters, 42, 7953-7955.
  • [18] Zhu, X., Wang, Y.-F., Ren, W., Zhang, F.-L., Chiba, S. 2013. TEMPO-Mediated Aliphatic C-H oxidation with oximes and hydrazones. Organic Letters, 15, 3214-3217.
  • [19] Liu, S., Liebeskind, L. S. 2008. A simple, modular synthesis of substituted pyridines. Journal of the American Chemical Society, 130, 6918-6919.
  • [20] Sinisterra, J. V., Marinas, J. M. 1987. Barium hydroxide as the catalyst in organic reactions. Part X. Reaction of chalcone with hydroxylamine. Bulletin Des Societes Chimiques Belges, 96, 293-302.
  • [21] Hyster, T. K., Rovis, T. 2011. Pyridine synthesis from oximes and alkynes via rhodium (iii) catalysis: Cp* and Cp t provide complementary selectivity. Chemical Communications, 47, 11846-11848.
  • [22] Frisch M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J. 2013. Gaussian, Inc., Wallingford CT.
  • [23] GaussView, Version 5, Dennington, R.; Keith, T.; Millam, J. 2009. Semichem Inc., Shawnee Mission, KS.
  • [24] Koopmans, T. 1933. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica, 1, 104.
  • [25] Mulliken, R. S. 1934. A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J. Chem.Phys., 2, 782.
  • [26] Pearson, R. G. 1963. Hard and soft acids and bases. J. Am. Chem. Soc., 85, 3533.
  • [27] Pearson, R. G. 1968. Hard and soft acids and bases, HSAB, part 1: fundamental principles. J. Chem. Educ., 45, 581.
  • [28] Pearson, R. G. 1999. Maximum chemical and physical hardness. J. Chem. Educ., 76, 267.
  • [29] Parr, R. G.; Pearson R. G. 1983. Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc., 105, 7512.
  • [30] Parr, R. G.; Szentpaly, L.; Liu, S. 1999. Electrophilicity index. J. Am. Chem. Soc., 121, 1922.
  • [31] Chattaraj, P. K.; Sarkar, U.; Roy, D. R. 2006. Electrophilicity index. Chem. Rev., 106, 2065.
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-7688
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1995
  • Yayıncı: Süleyman Demirel Üniversitesi