A Quantum Space and Some Associated Quantum Groups
In the present paper, we first introduce a quantum $n$-space on which the algebra of coordinates is $\eta$-commutative. Further, it is shown that there are some $\sigma$-twisted derivations acting on this algebra, and the algebra of such derivations is a quantum group. Morever, we show that a bicovariant differential calculus on this space can be constructed by using $\sigma$-twisted derivations. Finally, the quantum Lie algebra is obtained by using this bicovariant differential calculus.
___
- [1] Drinfeld, VG. 1987, Quantum Groups. Amer. Math. Soc. 1987. Proceedings International Congress of Mathematicians, 03-11 August 1986, Berkeley, 798-820.
- [2] Brzezinski, T. 1993. Remark on bicovariant differential calculi and exterior Hopf algebras. Lett Math Phys. 27 (1993), 287-300.
- [3] Gurevich, D. Generalized Translation Operators on Lie Groups. Sov J. Cont Math Anal 18 (1983), 57-70.
- [4] Borowiec, A., Kharchenko, V. 1995. First order optimum calculi. Bull. Soc. Sci. Lett. L 45(1995), 75-88.
- [5] Hu, N. Quantum Divided Power Algebra, QDerivatives, and Some New Quantum Groups. J Algebra 232 (2000), 507-540.
- [6] Madore, J. 2000. An Introduction to Noncommutative Differential Geometry and Its Applications. Cambridge, UK: Cambridge University Press.
- [7] Majid, S. 1995. Foundation of Quantum Group Theory. Cambridge, UK: Cambridge University Press.
- [8] Manin, Y.I. 1988. Quantum Groups and Noncommutative Geometry. Centre de Reserches Mathematiques, Montreal.
- [9] Manin, Y.I. 1989. Multiparemetric Quantum Deformation of the General Linear Supergroup. Commu. Math. Phys. 123 (1989), 163-175.
- [10] Sudbery, A. 1990. Non-commuting Coordinates and Differential Operators. In Proc.Workshop on Quantum Groups, Argogne, 33-51.
- [11] Woronowicz, S.L. 1989. Differential Calculus on Compact Matrix Pseudogroups. Commun. Math. Phys. 122 (1989), 125-170.
- [12] Ubriaco, R.M. 1992. Noncommutative Differential Calculus and q-Analysis. J. Phys. A;Math. Gen. 25(1992), 169-173.
- [13] Watts, P. Differential Geometry on Hopf Algebras and Quantum Groups, Ph.D. Thesis, hepth/9412153v1.
- [14] Wess, J., Zumino, B. 1990. Covariant Differential Calculus on the Quantum Hyperplane. Nucl. Phys. 18(1990), 302-312.
- [15] Schüler, A. 1999. Differential Hopf Algebras on Quantum Groups of Type A. J. Algebra 214 (1999), 479-518.
- [16] Scheunert, M. 1979. Generalized Lie Algebras. J Math Phys 20 (1979), 712-720 .