A Novel Multi-Criteria Decision Making Method based on The Ranking Values of Interval Type-2 Fuzzy Sets: An Application of a Manager Selection for a Telecommunication Company

Type-2 fuzzy sets (T2FSs), characterized by a fuzzy membership function, are much useful tool for representing the decision knowledge in the decision making process. Interval Type-2 fuzzy sets (IT2FSs) are the most commonly used T2FSs.  In this study, a method based upon ranking values of IT2FSs is used to tackle multi-criteria decision making (MCDM) problems. First, some basic concepts and arithmetic operations for IT2FSs are presented. Then, three kinds of fuzzy ranking methods, proposed by [1], based on arithmetic average (AA), geometric average (GA) and harmonic average (HA) operators to compute the ranking values of IT2FSs are applied. Finally, the outcomes of MCDM methods based on the ranking values of IT2FSs are obtained and also compared with the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method based on Type-1 fuzzy sets (T1FSs) for a numerical example.

___

  • [1] Quin, J., Liu, X. 2015. Multi-attribute group decision making using combined ranking vaue under interval type-2 fuzzy environment. Information Sciences 297, 293-315.
  • [2] Chen, S. M. 1988. A new approach to handling fuzzy decision making problems. IEEE Transactions on Systems, Man, and Cybernetics, 18(6), 1012–1016.
  • [3] Chen, C. T. 2000. Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems, 114(1), 1–9.
  • [4] Wang, W., Liu X., Quin, Y. 2012. Multi-attribute group decision making models under interval type-2 fuzzy environment. Knowledge-Based System 30 (2012),121-128.
  • [5] Liginlal, D., Ow, T. T. 2006. Modeling attitude to risk in human decision processes: An application of fuzzy measures. Fuzzy Sets and Systems, 157(23), 3040–3054.
  • [6] Wang T. C., Chang, T. H. 2007. Application of TOPSIS in evaluating initial training aircraft under a fuzzy environment. Expert Systems with Applications, 33(4), 870–880.
  • [7] Fu, G. 2008. A fuzzy optimization method for multicriteria decision making: An application to reservoir flood control operation. Expert Systems with Applications, 34(1), 145–149.
  • [8] Hua, Z., Gong, B., Xu, X. 2008. A DS–AHP approach for multi-attribute decision making problem with incomplete information. Expert Systems with Applications, 34(3), 2221–2227.
  • [9] Lin, Y. H, Lee, P. C., Ting, H. I. 2008. Dynamic multi-attribute decision making model with grey number evaluations. Expert Systems with Applications, 35(4), 1638–1644.
  • [10] Zadeh, L. A. 1965. Fuzzy sets. Information and Control, 8, 338–353.
  • [11] Zadeh, L. A. 1975. The concept of a linguistic variable and its application to approximate reasoning—I. Information sciences, 8(3), 199-249.
  • [12] Lee, L. W. , Chen, S. M. 2008. A new method for fuzzy multiple attributes group decision-making based on the arithmetic operations of interval type-2 fuzzy sets. International Conference on Machine Learning and Cybernetic, Kunming, China. 3084–3089.
  • [13] Chen, S. M., Lee, L. W. 2010a. Fuzzy multiple attributes group decision-making based on ranking values and the arithmetic operations of interval type-2 fuzzy sets. Expert Systems with Applications, 37(1), 824–833.
  • [14] Chen, S. M., Lee, L. W. 2010b. Fuzzy multiple attributes group decision-making based on interval type-2 TOPSIS method. Expert Systems with Applications, 37(4), 2790–2798.
  • [15] Chen, S. M., Yang, M. Y., Lee, L. W., Yang, S.W. 2012. Fuzzy multiple attributes group decision-making based on ranking interval type-2 fuzzy sets. Expert Systems with Applications, 39, 5295–5308.
  • [16] Sahin, A. , Yapıcı Pehlivan, N., 2017. Evaluation of life quality by integrated method of AHP and TOPSIS based on interval type-2 fuzzy sets. Hacettepe Journal of Mathematics and Statistics, 46 (3) , 511- 523.
  • [17] Mendel, J. M., John, R. I., & Liu, F. L. 2006. Interval type-2 fuzzy logical systems made simple. IEEE Transactions on Fuzzy Systems, 14(6), 808–821.
  • [18] Ashtiani, B., Haghighirad, F., Makui, A., Montazer, G. 2009. Extension of fuzzy TOPSIS method based on interval-valued fuzzy sets. Applied Soft Computing, 9, 457–461.
  • [19] Chen, S.-M., Yang, M.-W., Lee, L.-W., Yang, S.-W.,2012. Fuzzy multiple attributes group decision-making based on ranking interval type-2 fuzzy sets. Expert Systems with Applications, 39 (5), 5295–5308.
  • [20] Hu, J., Zhang, Y., Chen, X., Liu, Y, 2013. Multi-criteria decision making method based on possibility degree of interval type-2 fuzzy number, Knowledge-Based System 43,21–29.
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-7688
  • Yayın Aralığı: 3
  • Başlangıç: 1995
  • Yayıncı: Süleyman Demirel Üniversitesi
Sayıdaki Diğer Makaleler

Reissner-Nordström Uzay-zaman Geometrisinde Burgers modelleri için Şok ve Seyrelme Dalgalarının Yayılımı

Baver OKUTMUŞTUR

Geri Adımlama Tekniği ile Bir DC Motorun Konum ve Hız Kontrolü

Reşat Özgür DORUK, Ahmed ZUGLEM

A Novel Multi-Criteria Decision Making Method based on The Ranking Values of Interval Type-2 Fuzzy Sets: An Application of a Manager Selection for a Telecommunication Company

Nimet YAPICI PEHLİVAN, Aynur ŞAHİN

Electrochemical sensing and fluorescence imaging of E. coli O157:H7 based on aptamer-conjugated semiconducting nanoparticles

Dilek ODACI DEMIRKOL, Kadri GULEC

The Investigation of Meat Yield of <em>Acanthobrama marmid</em> Heckel, 1843 From Karakaya Dam Lake

Ayşe Gul SAHIN, Rıdvan TEPE, Ünal İSPİR

Bazı Postnatal Gelişme Dönemlerinde Tavuk [<em>Gallus gallus domesticus</em>] Ovidukt Mukozasının Histokimyasal Yapısı

Kenan ÇINAR, Nazan GÖCER

Yağ Gülü (<i>Rosa damascena</i> Mill.)’nden Farklı Çözücü Ekstraksiyonları ile Elde Edilen Konkret ve Absolütün Verimlilik ve Koku Analizleri

Hasan BAYDAR, Melek AKDAŞ

Life Tables of <em>Hermetia illucens</em> (Linnaeus, 1758) (Diptera: Stratiomyidae) on Different Foods

Bülent YAŞAR, Tansu ÇİRİK

Investigation of Chemical Composition and Nutritional Value of Truffle Mushroom (<em>Tuber nitidum</em> Vittad.)

Şeyda KIVRAK, İbrahim KIVRAK

On Generalized and Extended Generalized $\phi$-recurrent Sasakian Finsler Structures

Nesrin ÇALIŞKAN, Ayşe Funda SAĞLAMER