Abatement efficiency and fate of EPA-Listed PAHs in aqueous medium under simulated solar and UV-C irradiations, and combined process with TiO2 and H2O2

Photolytic degradation of dissolved compounds of 16 EPA-Listed PAHs in aqueous medium, exposed to ultraviolet/ titanium dioxide (UV-C/TiO2), xenon light/ titanium dioxide (Xe/TiO2), xenon light/ hydrogen peroxide (Xe/H2O2) and ultraviolet/ hydrogen peroxide (UV-C/H2O2) was studied. The compounds which detected above detection limit of applied analytical method and instrument include: naphthalene (Nap), acenaphthylene (Acy), acenaphthene (Ace), fluorene (Flu), fluoranthene (Fln) and pyrene (Pyr) survived. A time-course experiment (0, 1, 2, 5, 12 min) was performed to determine the fate of PAHs profile along treatments. After accomplishment of the removal process ∑6 PAHs ranked as follow: UV-C/TiO2 > Xe/TiO2 > UV-C > Xe > Xe/H2O2, and UV-C /H2O2 with estimated values of 76.38, 23.02, 22.55, 2.78, 0.00 and 0.00% of the concentration values at the beginning of the treatment, respectively. High efficiency of Xe/H2O2 treatment process (100.00%) at the end of treatment and the structure of residual PAHs which changed to the lighter compounds (2,3-ringed PAHs) before accomplishment of the removal process were proven. Generally, low resistance of Fln to all treatment conditions was observed. Total removal of Nap was considered to be a characteristic PAH compound for completion of the removal of PAHs. Mutate of parent PAH compounds and intermediates were analyzed by gas chromatography-mass spectrometry (GC-MS) and the results suggest the evaluating the toxicity of the treated water due to by-product formation concerns

___

Achten, C. & Andersson, J.T. (2015). Overview of Polycyclic Aromatic Compounds (PAC). Polycyclic Aromatic Compounds, 35(2–4), 177–186. DOI: 10.1080/10406638.2014.994071

Amani-Ghadim, A.R. & Dorraji, M.S.S. (2015). Modeling of photocatalyatic process on synthesized ZnO nanoparticles: Kinetic model development and artificial neural networks. Applied Catalysis B: Environmental, 163, 539–546. DOI: 10.1016/j.apcatb.2014.08.020

Bagheri, S., Termehyousefi, A. & Do, T.O. (2017). Photocatalytic pathway toward degradation of environmental pharmaceutical pollutants: Structure, kinetics and mechanism approach. Catalysis Science and Technology, 7(20), 4548–4569. DOI: 10.1039/c7cy00468k

Battin, T.J., Kammer, F. v.d., Weilhartner, A., Ottofuelling, S. & Hofmann, T. (2009). Nanostructured TiO 2 : Transport Behavior and Effects on Aquatic Microbial Communities under Environmental Conditions. Environmental Science & Technology, 43(21), 8098–8104. DOI: 10.1021/es9017046

Beach, D. G., Quilliam, M. A., Rouleau, C., Croll, R.P. & Hellou, J. (2010). Bioaccumulation and biotransformation of pyrene and 1-hydroxypyrene by the marine whelk Buccinum undatum. Environmental Toxicology and Chemistry, 29(4), 779–788. DOI: 10.1002/etc.112

Bergman, Å., Heindel, J., Jobling, S., Kidd, K. & Zoeller, R.T. (2012). State of the science of endocrine disrupting chemicals, 2012. Toxicology Letters (Vol. 211). UNEP/WHO. DOI: 10.1016/j.toxlet.2012.03.020

Chatterjee, D. & Mahata, A. (2002). Visible light induced photodegradation of organic pollutants on dye adsorbed TiO2 surface. Journal of Photochemistry and Photobiology A: Chemistry, 153(1–3), 199–204. DOI: 10.1016/S1010-6030(02)00291-5

Daniela, M. Pampanin, M.O.S. (2013). Polycyclic Aromatic Hydrocarbons a Constituent of Petroleum: Presence and Influence in the Aquatic Environment. In Hydrocarbon. InTech. DOI: 10.5772/48176

Deng, X.-Y., Cheng, J., Hu, X.-L., Wang, L., Li, D. & Gao, K. (2017). Biological effects of TiO 2 and CeO 2 nanoparticles on the growth, photosynthetic activity, and cellular components of a marine diatom Phaeodactylum tricornutum. Science of The Total Environment, 575, 87–96. DOI: 10.1016/j.scitotenv.2016.10.003

Dionysiou, D., Puma, G.L., Ye, J., Schneider, J. & Bahnemann, D. (2016). Photocatalysis Applications. (D. D. Dionysiou, G. Li Puma, J. Ye, J. Schneider, & D. Bahnemann, Eds.). Cambridge: Royal Society of Chemistry. DOI: 10.1039/9781782627104

Fasnacht, M.P. & Blough, N.V. (2003). Mechanisms of the Aqueous Photodegradation of Polycyclic Aromatic Hydrocarbons. Environmental Science & Technology, 37(24), 5767–5772. DOI: 10.1021/es034389c

Fechner, H.F.H. & E.J. (2015). Chemical Fate and Transport in the Environment. Elsevier. DOI: 10.1016/C2011-0-09677-1

Forsgren, A.J. (2015). Wastewater Treatment: Occurrence and Fate of Polycyclic Aromatic Hydrocarbons (PAHs). CRC Press. Retrieved from https://books.google.com.tr/books?id=D3V3CAAAQBAJ&dq=Wastewate r+Treatment+Occurrence+and+Fate+of+Polycyclic+Aromatic+Hydrocarb ons+(PAHs)+DIO&lr=&source=gbs_navlinks_s&hl=en

Förstner, U. & Wittmann, G.T.W. (1981). Metal Pollution in the Aquatic Environment. Springer-Verlag. DOI: 10.1007/978-3-642-69385-4

Gmurek, M., Olak-Kucharczyk, M. & Ledakowicz, S. (2017). Photochemical decomposition of endocrine disrupting compounds – A review. Chemical Engineering Journal, 310, 437–456. DOI: 10.1016/j.cej.2016.05.014

González-Gaya, B., Fernández-Pinos, M.-C., Morales, L., Méjanelle, L., Abad, E., Piña, B., … Dachs, J. (2016). High atmosphere–ocean exchange of semivolatile aromatic hydrocarbons. Nature Geoscience, 9(6), 438–442. DOI: 10.1038/ngeo2714

Gurunathan, K., Murugan, A.V., Marimuthu, R., Mulik, U. & Amalnerkar, D. (1999). Electrochemically synthesised conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices. Materials Chemistry and Physics, 61(3), 173– 191. DOI: 10.1016/S0254-0584(99)00081-4

Kochany, J. & Maguire, R.J. (1994). Abiotic transformations of polynuclear aromatic hydrocarbons and polynuclear aromatic nitrogen heterocycles in aquatic environments. Science of The Total Environment, 144(1–3), 17–31. DOI: 10.1016/0048-9697(94)90424-3

Konstantinou, I.K. & Albanis, T.A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. Applied Catalysis B: Environmental, 49(1), 1–14. DOI: 10.1016/j.apcatb.2003.11.010

Kurtoglu, M. E., Longenbach, T. & Gogotsi, Y. (2011). Preventing Sodium Poisoning of Photocatalytic TiO2 Films on Glass by Metal Doping. International Journal of Applied Glass Science, 2(2), 108–116. DOI: 10.1111/j.2041-1294.2011.00040.x

Kurtoglu, M. E., Longenbach, T., Reddington, P. & Gogotsi, Y. (2011). Effect of Calcination Temperature and Environment on Photocatalytic and Mechanical Properties of Ultrathin Sol-Gel Titanium Dioxide Films. Journal of the American Ceramic Society, 94(4), 1101–1108. DOI: 10.1111/j.1551-2916.2010.04218.x

Luo, Z., Wei, C., He, N., Sun, Z., Li, H. & Chen, D. (2015). Correlation between the Photocatalytic Degradability of PAHs over Pt/TiO 2 -SiO 2 in Water and Their Quantitative Molecular Structure. Journal of Nanomaterials, 2015, 1–11. DOI: 10.1155/2015/284834

Mastral, A.M. & Callén, M.S. (2000). A Review on Polycyclic Aromatic Hydrocarbon (PAH) Emissions from Energy Generation. Environmental Science & Technology, 34(15), 3051–3057. DOI:10.1021/es001028d

Miller, J.S., & Olejnik, D. (2001). Photolysis of polycyclic aromatic hydrocarbons in water. Water Research, 35(1), 233–243. DOI: 10.1016/S0043-1354(00)00230-X

Mondal, K., Bhattacharyya, S. & Sharma, A. (2014). Photocatalytic Degradation of Naphthalene by Electrospun Mesoporous Carbon-Doped Anatase TiO 2 Nanofiber Mats. Industrial & Engineering Chemistry Research, 53(49), 18900–18909. DOI: 10.1021/ie5025744

Motorykin, O., Santiago-Delgado, L., Rohlman, D., Schrlau, J. E., Harper, B., Harris, S., … Massey Simonich, S. L. (2015). Metabolism and excretion rates of parent and hydroxy-PAHs in urine collected after consumption of traditionally smoked salmon for Native American volunteers. Science of The Total Environment, 514, 170–177. DOI: 10.1016/j.scitotenv.2015.01.083

Mueller, N.C. & Nowack, B. (2008). Exposure Modeling of Engineered Nanoparticles in the Environment. Environmental Science & Technology, 42(12), 4447–4453. DOI: 10.1021/es7029637

Naphthalene in Moth Balls and Toilet Deodorant Cakes - Fact sheets. (n.d.). Retrieved from www.health.nsw.gov.au/publichealth/infectious/phus.asp National Academy of Sciences. (1993). Managing Wastewater in Coastal Urban Areas. Washington, D.C.: National Academies Press. DOI: 10.17226/2049

Oturan, M.A. & Aaron, J.-J. (2014). Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review. Critical Reviews in Environmental Science and Technology, 44(23), 2577–2641. DOI: 10.1080/10643389.2013.829765

Pal, A., Gin, K.Y.H., Lin, A.Y.C. & Reinhard, M. (2010). Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects. Science of the Total Environment, 408(24), 6062–6069. DOI: 10.1016/j.scitotenv.2010.09.026

Pujro, R., Falco, M. & Sedran, U. (2015). Catalytic Cracking of Heavy Aromatics and Polycyclic Aromatic Hydrocarbons over Fluidized Catalytic Cracking Catalysts. Energy & Fuels, 29(3), 1543–1549. DOI: 10.1021/ef502707w

Ramesh, A., Archibong, A., Hood, D., Guo, Z. & Loganathan, B. (2011). Global Environmental Distribution and Human Health Effects of Polycyclic Aromatic Hydrocarbons. In Global Contamination Trends of Persistent Organic Chemicals (pp. 97–126). CRC Press. DOI: 10.1201/b11098-7

Ravindra, K., Sokhi, R. & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895–2921. DOI: 10.1016/j.atmosenv.2007.12.010

Rezaee, M., Assadi, Y., Milani Hosseini, M.-R., Aghaee, E., Ahmadi, F. & Berijani, S. (2006). Determination of organic compounds in water using dispersive liquid–liquid microextraction. Journal of Chromatography A, 1116(1–2), 1–9. http://doi.org/10.1016/j.chroma.2006.03.007

Ross, R.D. & Crosby, D.G. (1985). Photooxidant activity in natural waters. Environmental Toxicology and Chemistry, 4(6), 773–778. DOI:10.1002/etc.5620040608

Shanker, U., Jassal, V. & Rani, M. (2017). Degradation of toxic PAHs in water and soil using potassium zinc hexacyanoferrate nanocubes. Journal of Environmental Management, 204, 337–348. DOI: 10.1016/j.jenvman.2017.09.015

Sigman, M.E., Schuler, P.F., Ghosh, M.M. & Dabestani, R.T. (1998). Mechanism of Pyrene Photochemical Oxidation in Aqueous and Surfactant Solutions. Environmental Science & Technology, 32(24), 3980–3985. DOI: 10.1021/es9804767

Sigman, M.E., Zingg, S.P., Pagni, R.M. & Burns, J. H. (1991). Photochemistry of anthracene in water. Tetrahedron Letters, 32(41), 5737–5740. DOI: 10.1016/S0040-4039(00)93543-3

Stogiannidis, E. & Laane, R. (2015). Source Characterization of Polycyclic Aromatic Hydrocarbons by Using Their Molecular Indices: An Overview of Possibilities. In Springer International Publishing (Vol. 234, pp. 49– 133). Springer International Publishing . DOI: 10.1007/978-3-319-10638-0_2

Tiedeken, E.J., Tahar, A., McHugh, B. & Rowan, N.J. (2017). Monitoring, sources, receptors, and control measures for three European Union watch list substances of emerging concern in receiving waters – A 20 year systematic review. Science of The Total Environment, 574, 1140– 1163. DOI: 10.1016/j.scitotenv.2016.09.084

Tjeerdema, R.S. (2012). Aquatic Life Water Quality Criteria for Selected Pesticides. (R. S. Tjeerdema, Ed.) (Vol. 216). Boston, MA: Springer US. DOI: 10.1007/978-1-4614-2260-0

Tornero, V., & Hanke, G. (2016). Chemical contaminants entering the marine environment from sea-based sources: A review with a focus on European seas. Marine Pollution Bulletin, 112(1–2), 17–38. DOI: 10.1016/j.marpolbul.2016.06.091

U.S. Environmental Protection Agency. (2007). Ecological Soil Screening Levels for Polycyclic Aromatic Hydrocarbons (PAHs) Interim Final. Washington, DC. Retrieved from https://www.epa.gov/sites/production/files/2015-09/documents/ecossl_pah.pdf

USEPA. (2007). Method 625 - Base/neutrals and acids. Methods for organic chemical analysis of municipal and industrial wastewater.

Viswanathan, V., Hansen, H.A., & Nørskov, J.K. (2015). Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation. The Journal of Physical Chemistry Letters, 6(21), 4224–4228. DOI: 10.1021/acs.jpclett.5b02178

Wang, Y., Zhu, X., Lao, Y., Lv, X., Tao, Y., Huang, B., … Cai, Z. (2016). TiO 2 nanoparticles in the marine environment: Physical effects responsible for the toxicity on algae Phaeodactylum tricornutum. Science of The Total Environment, 565, 818–826. DOI: 10.1016/j.scitotenv.2016.03.164

Water Treatability Database / Ultraviolet Irradiation + Hydrogen Peroxide. (n.d.). Retrieved December 26, 2018, from https://iaspub.epa.gov/tdb/pages/treatment/treatmentOverview.do

Wee, S.Y. & Aris, A.Z. (2017). Endocrine disrupting compounds in drinking water supply system and human health risk implication. Environment International, 106(April), 207–233. DOI: 10.1016/j.envint.2017.05.004

Yan, J., Wang, L., Fu, P.P. & Yu, H. (2004). Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the US EPA priority pollutant list. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 557(1), 99–108. DOI: 10.1016/j.mrgentox.2003.10.004

Yin, S., Tang, M., Chen, F., Li, T. & Liu, W. (2017). Environmental exposure to polycyclic aromatic hydrocarbons ( PAHs ): The correlation with and impact on reproductive hormones in umbilical cord serum *. Environmental Pollution, 220, 1429–1437. DOI: 10.1016/j.envpol.2016.10.090

Zhang, Y., Dong, S., Wang, H., Tao, S. & Kiyama, R. (2016). Biological impact of environmental polycyclic aromatic hydrocarbons ( ePAHs ) as endocrine disruptors *. Environmental Pollution, 213(November), 809– 824. DOI: 10.1016/j.envpol.2016.03.050
Su Ürünleri Dergisi-Cover
  • ISSN: 1300-1590
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1984
  • Yayıncı: Aynur Lök
Sayıdaki Diğer Makaleler

Istakoz (Homarus gammarus Linnaeus 1758) türüne özel yapay resif modelleri

Deniz ACARLI, SEMİH KALE

Hamsi (Engraulis encrasicolus) ve sardalya (Sardina pilchardus) iç organlarından tripsin eldesi ve bazı fonksiyonel özelliklerinin tespit

Boğaçhan Burak ERKAN, ŞÜKRAN ÇAKLI

Yenişakran (Çandarlı Körfezi, Ege Denizi) kıyı balıkçılığının mevsimsel av kompozisyonu ve birim çaba başına düşen av miktarları

TUĞÇE ŞENSURAT GENÇ, Okan AKYOL

Farklı konsantrasyonlarda kullanılan nisinin vakum paketlenerek soğukta (4±2°C) depolanan levrek (Dicentrarchus labrax) filetolarının yağ asit profili üzerine etkileri

Yılmaz UÇAR, Fatih ÖZOĞUL, Mustafa DURMUŞ, Ali̇ Rıza KÖŞKER, Yeşim ÖZOĞUL

İstavrit balığında ayıklama işlemi: Kalite, gıda güvenliği ve halk sağlığı ilişkisi

Gülgün F. ÜNAL ŞENGÖR, Zafer CEYLAN, Remziye Eda YARDIMCI, Samime ÖZTURAN

Abatement efficiency and fate of EPA-Listed PAHs in aqueous medium under simulated solar and UV-C irradiations, and combined process with TiO2 and H2O2

Navid KARGAR, Ali Reza Amani GHADİM, Amir Abbas MATİN, Golnar MATİN, Hasan Baha BÜYÜKIŞIK

Melendiz Çayı (Konya Kapalı Havzası) Squalius cappadocicus Özuluğ & Freyhof, 2011 popülasyonu için bazı popülasyon dinamiği parametrelerinin belirlenmesi

Burak SEÇER, Gamze CÖMERTPAY, SEVİL SUNGUR, ERDOĞAN ÇİÇEK

The genus Granulina (Mollusca: Gastropoda: Neogastropoda) from the Turkish coasts with taxonomical notes on some Mediterranean species

Franck BOYER, Walter RENDA, BİLAL ÖZTÜRK

Akdeniz türleri üzerine bazı taksonomik notlarla birlikte, Türkiye kıyılarındaki Granulina (Mollusca: Gastropoda: Neogastropoda) genusunun durumu

Bilal Öztürk, Walter Renda, Franck Boyer

Comparison on nutritional properties of wild and cultured brown trout and Atlantic salmon

ÖMER ALPER ERDEM, Başak ALKAN, MEHMET TOLGA DİNÇER