SPORCU VE SPORCU OLMAYAN ERKEK ÇOCUKLARDA OLGUNLAŞMAYA BAĞLI OLARAK ANAEROBİK PERFORMANS GELİŞİMİNİN DEĞERLENDİRİLMESİ

Bu araştırmanın amacı, 11-15 yaş arasındaki sporcu ve aktif spor yapmayan erkek çocuklarda anaerobik performans düzeyinin farklı olgunluk evreleri ve düzenli antrenman katılımına bağlı olarak incelenmesidir. Araştırmaya ortalama yaşları 12.96±1.43 yıl olan 75 sporcu (sporcu grup) ve 75 aktif spor yapmayan (kontrol grup) toplam 150 erkek çocuk gönüllü olarak katılmıştır. Sporcu grup en az bir yıl antrenman yaşına sahip, düzenli antrenman yapan takım sporcularından (Hentbol n=27; Futbol n=26; Voleybol n=22), kontrol grubu ise, daha önce düzenli antrenmana katılmamış erkek çocuklardan oluşmaktadır. Katılımcılar ayrıca Tanner evrelerine göre belirlenmiş beş farklı olgunluk düzeyi grubuna ayrılmışlardır. Vücut ağırlığı ve boy uzunluğu ölçümleriyle birlikte, vücut yağ yüzdesi ve yağsız vücut kütlesi uygun eşitliklerle değerlendirilmiştir. Anaerobik performans düzeyleri Wingate Anaerobik Testi ile belirlenmiştir. İstatistiksel analizlerde İki Yönlü Varyans Analizi (2x5) kullanılmış, ayrıca ilişki katsayıları hesaplanmıştır. Vücut ağırlığı ve yağsız vücut kütlesiyle kuvvetli pozitif ilişkili olan absolut anaerobik performans düzeyinin olgunlaşmayla birlikte anlamlı ölçüde arttığı belirlenmiştir (p<0.01). Gerek vücut ağırlığı gerekse yağsız vücut kütlesinden arındırılmış relatif anaerobik performans değerlerinin de ilerleyen olgunluk evreleri ile birlikte anlamlı ölçüde artış gösterdiği tespit edilmiştir (p<0.01). Sporcu grubuna ilişkin absolut ve relatif anaerobik performans değerlerinin kontrol grubuna göre daha yüksek olduğu ve faklılığın ilerleyen olgunluk evreleriyle birlikte bir miktar belirginleştiği gözlenmiştir. Ancak, tüm değişkenler için olgunluk etkisi (Tanner evreleri) ile antrenman etkisi (sporcu-kontrol grubu) arasındaki etkileşim anlamsızdır (p>0.05). Sonuç olarak, vücut ağırlığı ve yağsız vücut kütlesinden bağımsız olarak olgunlaşmayla birlikte anaerobik performanstaki artışın sürmesi, gelişimle birlikte iskelet kasındaki olası fonksiyonel ve metabolik değişimlerin de bu artışta etken olabileceğine işaret etmektedir

MATURITY RELATED VARIATION IN ANAEROBIC PERFORMANCE AMONG YOUNG MALE ATHLETES AND NONATHLETES

The aim of the present study was to assess the influence of maturation and regular sport participation on anaerobic performance variables of 11-to 15-year-old young male athletes and non-athletes. One hundred fifty young male subjects were voluntarily participated in this study. Trained boys (n=75), comprised of 27 Handball, 26 Soccer and 22 Volleyball players, had been training regularly for at least one year. However, untrained boys (n=75) were not involved in any systematic training program. Participants were also divided into five maturity groups according to Tanner’s stages. Body mass and stature were determined. Percentage of body fat and fat free mass were also calculated from the appropriate equations. Anaerobic performance was evaluated with the Wingate Anaerobic Test. Two-way Analysis of Variance (2x5) with Tukey’s-HSD was used for statistical analysis. Pearson’s correlation coefficients were also computed. The results revealed that absolute anaerobic performance variables were highly positively correlated with body mass and fat free mass, significantly increase with maturation (p<0.01). Maturation effect on anaerobic performance variables remained even when body mass and fat free mass were factored out (p<0.01). The trained boys have higher anaerobic performance values and relatively steeper increase with maturation compared to untrained group. Finally, there were no interaction effects between maturation and training groups on any of the variables. In conclusion, variations in anaerobic performance levels are partly determined by factors other than body mass or fat free mass. This finding may be due, in part, to the maturation-related functional and metabolic changes in skeletal muscle.

___

  • Açıkada C. (2004). Training in Children. Acta Orthop. Traumatol. Turc, 38(1), 16-26.
  • Ara I, Vicente-Rodriguez G, Jimenez-Ramirez J, Dorado C, Serrano-Sanchez JA, Calbet JA. (2004). Regular Participation in Sports is associated with Enhanced Physical Fitness and Lower Fat Mass in Prepubertal Boys. Int. J. Obes. Relat. Metab. Disord., 28(12), 1585-93.
  • Armstrong N, Barker AR, McManus AM. (2015). Muscle Metabolism Changes with Age and Maturation: How Do They Relate to Youth Sport Performance?. British Journal of Sports Medicine, 49(3). doi:10.1136/bjsports-2014-094491.
  • Armstrong N, Welsman JR, Chia MY. (2001). Short Term Power Output in Relation to Growth and Maturation. British Journal of Sports Medicine, 35(2), 118-24.
  • Boisseau N, Delamarche P. (2000). Metabolic and Hormonal Responses to Exercise in Children and Adolescents. Sports Medicine, 30(6), 405-22.
  • Cunha GS, Cumming SP, Valente-dos-Santos J, Duarte JP, Silva G, Dourado AC, Coelho-e-Silva M. (2017). Interrelationships among Jumping Power, Sprinting Power and Pubertal Status after Controlling for Size in Young Male Soccer Players. Perceptual and Motor Skills, 124(2), 329-50.
  • De Ste Croix MB, Armstrong N, Chia MY, Welsman JR, Parsons G, Sharpe P. (2001). Changes in Short-Term Power Output in 10- to 12-Year-Olds. Journal of Sports Sciences, 19(2), 141-8.
  • Dencker M, Thorsson O, Karlsson MK, Linden C, Svensson J, Wollmer P, Andersen LB. (2006). Daily Physical Activity and Its Relation to Aerobic Fitness in Children Aged 8-11 Years. European Journal of Applied Physiology, 96(5), 587-92.
  • Dunstheimer D, Hebestreit H, Staschen B, Strafburg MH, Jenschke R. (2001). Bilateral Deficit During Short-Term, High-Intensity Cycle Ergometry in Girls and Boys. European Journal of Applied Physiology, 84, 557-61.
  • Faulkner RA. (1996). Maturation. Ed. D. Docherty, Measurement In Pediatric Exercise Science (pp. 129-158), Human Kinetics, Champain, IL.
  • Güvenç A, Açikada C, Aslan A, Özer K. (2011). Daily Physical Activity and Physical Fitness in 11-to 15-Year-Old Trained and Untrained Turkish Boys. Journal of Sports Science and Medicine, 10(3), 502-14.
  • Hoffman JR, Kang J, Faigenbaum AD, Ratamess NA. (2005). Recreational Sports Participation is Associated with Enhanced Physical Fitness in Children. Res. Sports Med., 13(2), 149-61.
  • Ioakimidis P, Gerodimos V, Kellis E, Alexandris N, Kellis S. (2004). Combined Effects of Age and Maturation on Maximum Isometric Leg Press Strength in Young Basketball Players. J. Sports Med. Phys. Fitness, 44(4), 389-97.
  • Jones MA, Hitchen PJ, Stratton G. (2000). The Importance of Considering Biological Maturity When Assessing Physical Fitness Measures in Girls and Boys Aged 10 to 16 Years. Ann. Hum. Biol., 27(1), 57-65.
  • Kaczor JJ, Ziolkowski W, Popinigis J, Tarnopolsky MA. (2005). Anaerobic and Aerobic Enzyme Activities in Human Skeletal Muscle from Children and Adults. Pediatr. Res., 57, 331–5.
  • Kasabalis A, Douda H, Tokmakidis SP. (2005). Relationship Between Anaerobic Power and Jumping of Selected Male Volleyball Players of Different Ages. Perceptual and Motor Skills, 100(3 Pt 1), 607-14.
  • Leone M, Comtois AS. (2007). Validity and Reliability of Self-Assessment of Sexual Maturity in Elite Adolescent Athletes. Journal of Sports Medicine and Physical Fitness, 47(3), 361-5.
  • Matos N, Winsley RJ. (2007). Trainability of Young Athletes and Overtraining. Journal of Sports Science and Medicine, 6(3), 353-67.
  • Matsudo SM, Matsudo VK. (1994). Self-Assessment and Physician Assessment of Sexual Maturation in Brazilian Boys and Girls: Concordance and Reproducibility. Am. J. Hum. Biol., 6, 451-5.
  • McNarry M, Jones A. (2014). The Influence of Training Status on the Aerobic and Anaerobic Responses to Exercise in Children: A Review. European Journal of Sport Science, 14(1), 57-68.
  • Mercier B, Mercier J, Granier P, Le Gallais D, Prefaut C. (1992). Maximal Anaerobic Power: Relationship to Anthropometric Characteristics During Growth. Int. J. Sports Med., 13(1), 21-6.
  • Mota J, Guerra S, Leandro C, Pinto A, Ribeiro JC, Duarte JA. (2002). Association of Maturation, Sex, and Body Fat in Cardiorespiratory Fitness. Am. J. Human Biol., 14(6), 707-12.
  • Nikolaïdis P. (2011). Anaerobic Power Across Adolescence in Soccer Players. Human Movement, 12(4), 342-7.
  • Obert P, Mandigout M, Vinet A, Courteix D. (2001). Effect of a 13-Week Aerobic Training Programme on The Maximal Power Developed During a Force-Velocity Test in Prepubertal Boys and Girls. Int. J. Sports Med., 22(6), 442-6.
  • Perroni F, Pintus A, Frandino M, Guidetti L, Baldari C. (2018). Relationship among Repeated Sprint Ability, Chronological Age, and Puberty in Young Soccer Players. The Journal of Strength and Conditioning Research, 32(2), 364-71.
  • Philippaerts RM, Vaeyens R, Janssens M, Van Renterghem B, Matthys D, Craen R, Bourgois J, Vrijens J, Beunen G, Malina RM. (2006). The Relationship between Peak Height Velocity and Physical Performance in Youth Soccer Players. J. Sports Sci., 24(3), 221-30.
  • Ratel S, Blazevich AJ. (2017). Are Prepubertal Children Metabolically Comparable to Well-Trained Adult Endurance Athletes?. Sports Medicine, 47(8), 1477-85.
  • Slaughter MH, Lohman TG, Boileau RA, Horswill CA, Stillman RJ, VanLoan MD, Bemben DA. (1988). Skinfold Equations for Estimation of Body Fatness in Children and Youth. Human Biology, 60, 709-23.
  • Tanner JM. (1962). Growth at Adolescence. 2nd ed., Blackwell, Oxford, UK.
  • Tharp GD, Johnson GO, Thorland WG. (1984). Measurement of Anaerobic Power and Capacity in Elite Young Track Athletes Using the Wingate Test. J. Sports Med. Phys. Fitness, 24(2), 100-6.
  • Van Praagh E, Dore E. (2002). Short-Term Muscle Power During Growth and Maturation. Sports Medicine, 32(11), 701-28.
  • Volver A, Viru A, Viru M. (2000). Improvement of Motor Abilities in Pubertal Girls. J. Sports Med. Phys. Fitness, 40(1), 17-25.