Toz Çelik Cürufunun Çimento-Bentonit Bulamaç Hendeği Duvar Yapımında Kullanımı

Bu makalede, çimento-bentonit-toz çelik cürufu-kireç karışımlarının, bulamaç hendeği duvarlarda dolgu maddesi olarak kullanılabilmesi için, işlenebilirlik, geçirgenlik ve serbest basınç dayanımı özelliklerinin araştırıldığı kapsamlı bir laboratuvar çalışması sunulmaktadır. Çeşitli oranlarda hazırlanan çimento-bentonit-toz çelik cürufu-kireç karışımlarının, tane büyüklüğü dağılımı (PSD), likit limit, plastik limit, geçirgenlik ve serbest basınç dayanımınlarına (UCS) bakılmıştır. Her karışım için, kür süresinin etkisi incelenmiştir. Sonuçlar, çimento-bentonit-toz çelik cürufu-kireç dolgu maddesinin geçirgenliğinin standartların gerektirdiği 10-9 m/s (10-7 cm/s) yakın olduğunu göstermektedir. Laboratuvar gözlemleri, bu çalışmada değerlendirilen çimento-bentonit-toz çelik cürufu-kireç (CBS) dolgu maddesinin mukavemetinin zamanla arttığını göstermektedir. Dolgu maddesi hendeğe yerleştirildiginde viskoz bir sıvı kıvamındadır; daha sonra, düşey olarak durabilecek kadar güçlü bir malzemeye dönüşmektedir. %9 bentonit içeren karışımlar, sadece daha yüksek mukavemet değerleri vermekle kalmayıp, aynı zamanda bulamaç duvarı için önemli olan, bu çalışmada test edilen diğer karışımlara göre daha düşük geçirgenlik değeri vermişlerdir. Çimento-%9 bentonit-toz çelik cürufu- kireç karışımlarının bulamaç duvarı oluşturmak için uygun karışımlar olduğu sonucuna varılmıştır.

Use of Powdered Steel Slag in Cement-Bentonite Slurry Wall Construction

This paper presents a comprehensive laboratory investigation into the workability, permeability and unconfined compressive strength of powdered-steel-slag, lime-amended cement-bentonite backfills using several series of mixtures. Prepared mixtures comprise various proportions of cement, bentonite, powdered steel slag, and lime, which have been tested for particle size distribution (PSD), liquid limit, plastic limit, permeability, and unconfined compressive strength (UCS). For each mixture, the effect of varying curing time was investigated. The results show that the permeability of the powdered steel-slag, lime-amended cement-bentonite backfill is near enough to the 10-9 m/s (10-7 cm/s) required by standards. The laboratory observations clearly show that cement-bentonite-steel slag (CBS) backfill-evaluated in this study strengthens with time. When placed, the backfill is viscous liquid; later, it is a material strong enough to stand vertically. Amended mixtures including 9% of bentonite content have identified that they do not only give higher strength values but also present lower permeability considers to other mixtures as two most important keys in slurry wall construction. Therefore, it is concluded that CB–powdered steel slag–lime blended mixtures are superior materials for constructing slurry walls.

___

  • Andreas, L., Herrmann, I., Lidstrom-Larrsson, M., & Lagerkvist, A. (2005, October). Physical properties of steel slag to be reused in a landfill cover. In Proceedings Sardinia.
  • Carreto, J. (2014). Self-hardening slurry walls. A contribution for design, quality control and performance monitoring (Doctoral dissertation, Ph. D. thesis, Dept. of Civil Engineering and Architecture from IST, Lisbon Univ., Lisbon, Portugal).
  • Carreto, J. M. R., Caldeira, L. M. M. S., & Neves, E. J. L. M. D. (2015). Hydromechanical characterization of cement-bentonite slurries in the context of cutoff wall applications. Journal of Materials in Civil Engineering, 28(2), 04015093.
  • D'Appolonia, D. J. (1980). Soil-bentonite slurry trench cutoffs. Journal of Geotechnical and Geoenvironmental Engineering, 106(ASCE 15372).
  • Dhoble, Y., & Ahmed, S. (2018). Study on Cementitious Properties of Steel Slag by Partial Replacement of Cement. Global Journal of Engineering Science and Researches, 5(7), 213-220.
  • Du, Y. J., Fan, R. D., Liu, S. Y., Reddy, K. R., & Jin, F. (2015). Workability, compressibility and hydraulic conductivity of zeolite-amended clayey soil/calcium-bentonite backfills for slurry-trench cutoff walls. Engineering Geology, 195, 258-268.
  • Evans, J. C., & Dawson, A. R. (1999, December). Slurry walls for control of contaminant migration: A comparison of UK and US practices. In Geo-Engineering for Underground Facilities (pp. 105-120). ASCE.
  • Filz, G. M. (1996, November). Consolidation stresses in soil-bentonite backfilled trenches. In Proc., 2nd Int. Congress on Environmental Geotechnics (pp. 497-502). AA Balkema, Rotterdam, The Netherlands.
  • ICE (Institution of Civil Engineers). (1999). Specification for the construction of slurry trench cut-off walls as barriers to pollution migration.
  • Iron Steel Slag Report, Turkey Steel Producers Association (TSPA), 2015.
  • Jefferis, S. A. (2008). Reactive transport in cut-off walls and implications for wall durability. In GeoCongress 2008: Geotechnics of Waste Management and Remediation (pp. 652-659).
  • Joshi, K., Kechavarzi, C., Sutherland, K., Ng, M. Y. A., Soga, K., & Tedd, P. (2009). Laboratory and in situ tests for long-term hydraulic conductivity of a cement-bentonite cutoff wall. Journal of geotechnical and geoenvironmental engineering, 136(4), 562-572.
  • Khajeh, A., Chenari, R. J., & Payan, M. A Simple Review of Cemented Non-Conventional Materials: Soil Composites. Geotechnical and Geological Engineering, 1-22.
  • LaGrega, M. D., Buckingham, P. L., & Evans, J. C. (2001). Hazard waste management, 2nd edn. McGraw-Hall. Inc., New York.
  • Mason, B. (1944). The constitution of some basic open-hearth slags. The constitution of some basic open-hearth slags.
  • Manassero, M., Fratalocchi, E., Pasqualini, E., Spanna, C., & Verga, F. (1995). Containment with vertical cutoff walls. In Geoenvironment 2000: Characterization, Containment, Remediation, and Performance in Environmental Geotechnics (pp. 1142-1172). ASCE.
  • Millet, R. A., & Perez, J. Y. (1981). Current USA Practices: Slurry Wall Specifications. Journal of the Geotechnical Engineering Division, 107(8), 1041-1056.
  • Opdyke, S. M., & Evans, J. C. (2005). Slag-cement-bentonite slurry walls. Journal of geotechnical and geoenvironmental Engineering, 131(6), 673-681. Oweis, I. S., & Khera, R. P. (1990). Geotechnology of waste management.
  • PCA. (2005). Iron and Steel Byproducts. Portland Cement Association Sustainable Manufacturing Fact Sheet.
  • Wang, Q., Yang, J., & Yan, P. (2013). Cementitious properties of super-fine steel slag. Powder technology, 245, 35-39.
  • Ruffing, D. G., Evans, J. C., & Malusis, M. A. (2010). Prediction of earth pressures in soil-bentonite cutoff walls. In GeoFlorida 2010: Advances in Analysis, Modeling & Design (pp. 2416-2425).
  • Rumer, R. R., & Ryan, M. E. (1995). Barrier containment technologies for environmental remediation applications. Wiley-Interscience.
  • Ryan, C. R. (1987, June). Vertical barriers in soil for pollution containment. In Geotechnical practice for waste disposal'87 (pp. 182-204). ASCE.
  • Fathy, S., Liping, G., Ma, R., Chunping, G., & Wei, S. (2018). Comparison of Hydration Properties of Cement-Carbon Steel Slag and Cement-Stainless Steel Slag Blended Binder. Advances in Materials Science and Engineering, 2018.
  • Shi, C. (2004). Steel slag—its production, processing, characteristics, and cementitious properties. Journal of Materials in Civil Engineering, 16(3), 230-236.
  • Slag-Cement-Bentonite Slurry Walls Geo-Solutions: Soil and Groundwater Problems Solved.” Geo. (2017). Internet Site for Data on Slag-Cement Bentonite www.geo-solutions.com/services/slurry-walls/slag-cement-cement-bentonite (last accessed October 2019).
  • Spooner P A, Wetzel R S, Spooner, C E, Furman, C A, Tokarski E F, Hunt, G E. (1984). Slurry trench construction for pollution migration control. EPA-540/2-84-001, U.S. Environmental Protection Agency, Cincinnati.
  • Sreedharan, V., Puvvadi, S. (2013). Compressibility behaviour of bentonite and organically modified bentonite slurry. Geotechnique 63 (10), 876–879.
  • Talefirouz, D., Çokça, E., and Omer, J. (2016). Use of granulated blast furnace slag and lime in cement-bentonite slurry wall construction. International Journal of Geotechnical Engineering, 10(1), 81-85.
  • Wang, D., Zentar, R., & Abriak, N. E. (2018). Durability and swelling of solidified/stabilized dredged marine soils with Class-F fly ash, cement, and lime. Journal of Materials in Civil Engineering, 30(3), 04018013.
  • Xu, H., Zhu, W., Qian, X., Wang, S., & Fan, X. (2016). Studies on hydraulic conductivity and compressibility of backfills for soil-bentonite cutoff walls. Applied Clay Science, 132, 326-335.