GENERAL PRINCIPLES OF SOL - GEL

The sol–gel synthesis based on the hydrolysis and condensation of molecular precursors is used to prepare a wide range of inorganic materials. The sol-gel technique is a very convenient method of obtaining both inorganic and hybrid organic-inorganic polymers. Basic advantage of this technique is carrying out the whole process at very gentle conditions. In contrast to solid-state processes, sol- gel processes offer the possibility to control the reaction pathways on a molecular level during the transformation of the precursor species to the final product. In this way, sol-gel processes enable the synthesis of nanoparticles with well-defined and uniform crystal morphologies and with superior purity and homogeneity. Sol-gel chemistry is a quite complex process, on the one hand due to the high reactivity of the metal oxide precursors towards water and the double role of water as ligand and solvent, and, on the other hand, due to the large number of reaction parameters that have to be strictly controlled (hydrolysis and condensation rate of the metal oxide precursors, pH, temperature, method of mixing, rate of oxidation, etc.) in order to provide good reproducibility of the synthesis protocol. Therefore, the main target of the present review is to explain the basic principles of sol-gel process and to evaluate the parameters that are effective in the sol- gel processes.

___

  • [1] Znaidi L., “Sol–gel-deposited ZnO thin films: A review”, Materials Science and Engineering B, 174, 18–30, 2010.
  • [2] Niederberger M., Pinna N., “Metal Oxide Nanoparticles in Organic Solvents”, Springer Dordrecht Heidelberg London, New York, 2009, 7-16.
  • [3] Livage J., “Sol-gel processes”, Current Opinion in Solid State & Materials Science, 2, 132-138, 1997.
  • [4] Brinker C.J., Scherer G.W., “Sol- gel science- the physics and chemistry of sol- gel processing”, Academic, New York, 1989.
  • [5] Li W., Fries D.P., Malik A., “Sol–gel stationary phases for capillary electro chromatography”, Journal of Chromatography A, 1044, 23–52, 2004.
  • [6] Metroke T.L., Parkhill R.L., Knobbe E.T., “Passivation of metal alloys using sol–gel-derived materials — a review”, Progress in Organic Coatings, 41, 233–238, 2001.
  • [7] Maruszewskı K., Strek W., Jasıorskı M., et al., “Technology and Applications of Sol-Gel Materıals”, Radiation Effects & Defects in Solids, 158, 439–450, 2003.
  • [8] Aurobind S.V., Amirthalingam K.P., Gomathi H., “Sol-gel based surface modification of electrodes for electro analysis”, Advances in Colloid and Interface Science, 121, 1–7, 2006.
  • [9] Livage J., Beteille F., Roux C., et al., “Sol- Gel Synthesıs Of Oxide Materials” Acta mater.,46, 3, 743-750, 1998.
  • [10] Mackenzie J.D., Bescher E.P., “Chemical Routes in the Synthesis of Nanomaterials Using the Sol–Gel Process”, Acc. Chem. Res., 40 (9), 810–818, 2007.
  • [11] Pierre A., C., “Introduction to Sol-Gel Processing”, Kluwer Academic Publishers, Boston, Dordrecht, London, 1998.
  • [12] Gupta R., Chaudhury N.K., “Entrapment of biomolecules in sol–gel matrix for applications in biosensors: Problems and future prospects” Biosensors and Bioelectronics, 22, 2387–2399, 2007.
  • [13] Locher M., Romano V., Weber H.P., “Rare-earth doped sol–gel materials for optical waveguides”, Optics and Lasers in Engineering, 43, 341–347, 2005.
  • [14] Kloskowski A., Pilarczyk M., Chrzanowski W., et al., “Sol-Gel Technique—A Versatile Tool for Adsorbent Preparation”, Analytical Chemistry, 40, 172–186, 2010.
  • [15] Livage J., Ganguli D., “Sol-gel electro chromic coatings and devices: A review” Solar Energy Materials & Solar Cells, 68, 365-381, 2001.
  • [16] Thitinun S., Thanabodeekij N., Jamieson A.M., et al., “Sol-gel processing of spirosilicates”, Journal of the European Ceramic Society, 23, 417–427, 2003.
  • [17] Toygun Ş., Köneçoğlu G., Kalpaklı Y., ve diğerleri, “Yaşlandırma Zamanı Etkisinin İncelendiği TiO2 Nanokristal Tozlarının Üretimi ve Fotokatalitik Uygulamaları”, II. Ulusal Nanoteknoloji Kongresi, İstanbul, 2012, 85-91.
  • [18] Siouffi A.M., “Silica gel-based monoliths prepared by the sol–gel method: facts and figures”, Journal of Chromatography A, 1000, 801–818, 2003.
  • [19] Wright J.D., Sommerdijk N.A.J.M., “Sol-gel materials: chemistry and applications”, Gordon and Breach Science Publishers, Amsterdam, 2001.
  • [20] Reed, J.S., Principles of Ceramics Prosessing, 2nd edition.,Wiley Publishing, ISBN 978-0-471-59721-6, 1995.
  • [21] Morpurgo M., Teoli D., Palazzo B., et al, “Influence of synthesis and processing conditions on the release behavior and stability of sol–gel derived silica xerogels embedded with bioactive compounds”, Il Farmaco, 60, 675–683, 2005.
  • [22] Keshmiri M., Troczynski T., Mohseni M., “Oxidation of gas phase trichloroethylene and toluene using composite sol–gel TiO2 photocatalytic coatings”, Journal of Hazardous Materials B, 128, 130–137, 2006.
  • [23] Oye G., Glomm W.R., Vrålstad T., et al., “Synthesis, functionalisation and characterisation of mesoporous materials and sol–gel glasses for applications in catalysis, adsorption and photonics”, Advances in Colloid and Interface Science, 123–126, 17–32, 2006.
  • [24] Armelao L., Barreca D., Moraru B., “A molecular approach to RuO2-based thin films: sol–gel synthesis and characterisation”, Journal of Non-Crystalline Solids 316, 364–371, 2003.
  • [25] Aegerter M.A., “Sol- gel niobium pentoxide: Apromising material for electrochromic coatings, batteries, nanocrystalline solar cells and catalysis”, Solar Energy Materials & Solar Cells, 68, 401-422, 2001.
  • [26] Carmona N., Herrero E., Llopis J., et al., “Chemical sol–gel-based sensors for evaluation of environmental humidity”, Sensors and Actuators B, 126, 455–460, 2007.
  • [27] Maduraiveeran G., Ramaraj R., “A facile electrochemical sensor designed from gold nanoparticles embedded in three-dimensional sol–gel network for concurrent detection of toxic chemicals”, Electrochemistry Communications, 9, 2051–2055, 2007.
  • [28] Pakizeh M., Omidkhah M.R., Zarringhalam A., “Synthesis and characterization of newsilica membranes using template–sol–gel technology”, International Journal of Hydrogen Energy 32, 1825 – 1836, 2007.
  • [29] Park S.H., Park J.S., Yim S.D., et al., “Preparation of organic/inorganic composite membranes using two types of polymer matrix via a sol–gel process”, Journal of Power Sources, 181, 259–266, 2008.
  • [30] Yang Y., Wang P., “Preparation and characterizations of a new PS/TiO2 hybrid membranes by sol–gel process”, Polymer, 47, 2683–2688, 2006.
  • [31] Gutiérrez J.A. R., Dom´ınguez M.D.P., Mac´ıas J.M.P., “Development of ionoselective electrochemical sensors by using the sol–gel process”, Analytica Chimica Acta 524, 339–346, 2004.
  • [32] Yun L., “High extraction efficiency solid-phase microextraction fibers coated with open crown ether stationary phase using sol–gel technique”, Analytica Chimica Acta 486, 63–72, 2003.
  • [33] Zeng Z., Qui W., Huang Z., “Solid-Phase Microextraction Using Fused-Silica Fibers Coated with Sol-Gel-Derived Hydroxy-Crown Ether”, Anal. Chem., 73, 2429-2436, 2001.
  • [34] Jeronimo P.C.A., Ara´ujo A.N., Conceiçao M., et al., “Optical sensors and biosensors based on sol–gel films”, Talanta 72, 13–27, 2007.
  • [35] Volkan M., Stokes D.L., Vo-Dinh T., “A sol–gel derived AgCl photochromic coating on glass for SERS chemical sensor application”, Sensors and Actuators B 106, pp. 660–667, 2005.
  • [36] Skaarup S., West K., Christiansen B.Z., et al., “Towards solid state lithium batteries based on ORMOCER electrolytes” Electrochimica Acta, 43, 10-11, 1589-1592, 1998.
  • [37] Phani A.R., Passacantando M., Santucci S., “Synthesis and characterization of hafnium oxide and hafnium aluminate ultra-thin films by a sol–gel spin coating process for microelectronic applications”, Journal of Non-Crystalline Solids, 353, 663–669, 2007.
  • [38] Lebeau B., Sanchez C, “Sol-gel derived hybrid inorganic-organic nanocomposites for optics”, Current Opinion in Solid State & Materials Science, 4, 11-23, 1999.
  • [39] Kumar A., Gaurav, Malik, A.K., et al., “A review on development of solid phase microextraction fibers by sol–gel methods and their applications”, Analytica Chimica Acta, 610, 1–14, 2008.
  • [40] Dilsiz, N., Akovalı G., “Study of sol–gel processing for fabrication of low density alumina microspheres”, Materials Science and Engineering A, 332, 91–96, 2002.
  • [41] Li W., Fries D.P., Malik A., “Sol–gel stationary phases for capillary electrochromatography”, Journal of Chromatography A, 1044, 23–52, 2004.
  • [42] Quinson J. F., Tchipkam N., Dumas J., et al., ‘Non-crystalline solids’, 99, 151-159, 1988.
  • [43] Iler R. K., ‘The chemistry of silica’, Wiley, New York, 1979.
  • [44] Winkler J., “Titanium dioxide”, European Coating Literature, Hannover, Vincentz, 2003.
  • [45] Xingzhao D., Ju L., Zhenzhong Q., et al., “Effect of hydrolysis catalysts on structural evaluation of sol- gel derived titania nanocrystalline powders”, Chinese Physics Letters, 12, 2- 123, 1995.
  • [46] Hsiang H., Lin S. C., ‘Effect of aging on the phase transformation and sintering properties of TiO2 gels’, Materials Science and Engineering A, 380, 67- 72, 2004.
  • [47] Jones R.W., “Fundamental Principles of Sol-Gel Technology”, The Institute of Metals, London, 1989.
  • [48] Clapsaddle B.J., Sprehn D.W., Gash A.E., Satcher Jr.J.H., Simpson R.L., “A versatile sol–gel synthesis route to metal–silicon mixed oxide nanocomposites that contain metal oxides as the major phase”, Journal of Non-Crystalline Solids 350, 173–181, 2004.
  • [49] Hirashima H., Kojima C., Kohama K., Imai H., Balek V., Hamada H., Inaba M., “Oxide aerogel catalysts”, Journal of Non-Crystalline Solids 225, 153–156, 1998.
  • [50] Maldonado-Hódar F.J., Moreno-Castilla C., Rivera-Utrilla J., “Synthesis, pore texture and surface acid–base character of TiO2/carbon composite xerogels and aerogels and their carbonized derivatives”, Applied Catalysis A: General 203, 151–159, 2000.
  • [51] Jones S.M., “Gradient composition sol-gel materials”, Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91 109-8099.
  • [52] ˇZabova H., Sobek J., Cı´rkva V., ˇSolcova O., Kment S., Ha´jek M., “Efficient preparation of nanocrystalline anatase TiO2 and V/TiO2 thin layers using microwave drying and/or microwave calcinations technique”, Journal ofSolidStateChemistry182, 3387–3392, 2009.
  • [53] You X., Chen V., Zhang J., “Effects of Calcination on the Physical and Photocatalytic Properties of TiO2 Powders Prepared by Sol–Gel Template Method”, Journal of Sol-Gel Science and Technology, 34, 181–187, 2005.
  • [54] Luis A.M., Neves M.C., Mendon M.H., et al., “Influence of calcination parameters on the TiO2 photocatalytic properties”, Materials Chemistry and Physics, 125, 20–25, 2011.
  • [55] Othman M.R., Mustafa N.N.N., Ahmad A.L., “Effect of thermal treatment on the microstructure of sol–gel derived porous alumina modified platinum”, Microporous and Mesoporous Materials, 91, 268–275, 2006.
  • [56] Porkodi K. Arokiamary S., “Synthesis and spectroscopic characterization of nanostructured anatase titania: A photocatalyst”, Materials Characterization, 58, 495–503, 2007.
  • [57] Bayrakçeken, A., ‘Platinum and Platinum-Ruthenıum Based Catalysts on Various Carbon Supports Prepared by Different Methods for Pem Fuel Cell Applications’ In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemical Engineering, 2008.
  • [58] Borkar S.A., Dharwadkar S.R., “Effect of microwave processing on polymorphic transformation of TiO2”, Ceramics International 30, 509–514, 2004.
  • [59] Damardji B., Khalaf H., Duclaux L., David B., “Preparation of TiO2-pillared montmorillonite as photocatalyst Part I. Microwave calcination, characterisation, and adsorption of a textile azo dye”, Applied Clay Science 44, 201–205, 2009.
  • [60] Damardji B., Khalaf H., Duclaux L., David B., “Preparation of TiO2-pillared montmorillonite as photocatalyst Part II Photocatalytic degradation of a textile azo dye”, Applied Clay Science 45, 98–104, 2009.
  • [61] Jung S., Kim J.H., “Sintering characteristics of TiO2 nanoparticles by microwave processing”, Korean J. Chem. Eng., 27(2), 645-650, 2010.
  • [62] AddamoM., Bellardita M., Carriazo D., Paola A.D., Milioto S., Palmisano L., Rives V., “Inorganic gels as precursors of TiO2 photocatalysts prepared by low temperature microwave or thermal treatment”, Applied Catalysis B: Environmental 84, 742–748, 2008.
  • [63] Mohammadi M.R., Fray D.J., “Sol–gel derived nanocrystalline and mesoporous barium strontium titanate prepared at room temperature”, Particuology, 9, 235–242, 2011.
  • [64] Hamadanian M., Reisi-Vanani A., Majedi A., “Sol-Gel Preparation and Characterization of Co/TiO2 Nanoparticles: Application to the Degradation of Methyl Orange” J. Iran. Chem. Soc., 7, 52-58, 2010.