INVESTIGATION AND COMPARING OF AN IRREVERABLE OTTO CYLE WITH PERFORMANCE EVALUATION METHODS

In this study, optimization was conducted and results were compared for irreversible OTTO cycle by using performance evaluation criteria that exist in the literature. In thermodynamic analysis, compression ratio was selected as variable. Because, it has important effects on the engine performance. In addition to that, it was assumed that specific heats change with temperature. According to obtained results, it is suitable that optimization process should be performed for ecological performance criteria. Because, it provides more reasonable results.

___

  • [1] Angulo-Brown F., “An ecological optimization criterion for finite-time heat engines”, Journal of Applied Physic, 69, 7465-7469, 1991.
  • [2] Yan Z., “Comment on Ecological optimization criterion for finite-time heat-engines”, Journal of Applied Physic, 73, 3583, 1993.
  • [3] Chen L., Zhang W., Sun F., “Power, efficiency, entropy – generation rate, ecological optimization for a class of generalized irreversible universal heat – engine cycles”, Applied Energy 84, 512 – 25, 2007.
  • [4] Chen L., Zhou J., Sun F., Wu C., “Ecological optimization for generalized irreversible Carnot engines”, Applied Energy 77, 327 – 38, 2004.
  • [5] Chen L., Xiaoqin Z., Sun F., Wu C., Exergy-based ecological optimization for a generalized irreversible Carnot heat-pump”, Applied Energy 84, 78 - 88, 2007.
  • [6] Huang Y., Sun D., Kang Y., “Performance optimization for an irreversible four-temperature-level absorption heat pump”, International Journal of Thermal Science 4, 7479 - 85, 2008.
  • [7] Yan Z., Lin G., “Ecological optimization criterion for an irreversible three-heat-source refrigerator”, Applied Energy 66, 213 – 24, 2000.
  • [8] Cheng C., Chen C., “The ecological optimization of an irreversible Carnot heat-engine”, J. Phys. D: Appl. Phys., 30, 1602-09, 1997.
  • [9] Xia D., Chen L., Sun F., “Universal ecological performance for endoreversible heat engine cycles”, Int. J. Ambient Energy, 27, 15-20, 2001.
  • [10] Zhang W., Chen L., Sun F., Wu C., “Exergy-based ecological optimal performance for a universal endoreversible thermodynamic cycle”, Int. J. Ambient Energy, 28, 51-56, 2007.
  • [11] Chen L., Zhu X., Sun F., Wu C., “Exergy-based ecological optimization of linear phenomenological heat transfer law irreversible Carnot engines”, Applied Energy, 83, 573 - 82, 2006.
  • [12] Zhu X., Chen L., Sun F., Wu C., “The ecological optimization of a generalized irreversible Carnot engine with a generalized heat-transfer law”, Int. J. Ambient Energy, 24, 189 - 94, 2003.
  • [13] Zhu X., Chen L., Sun F., Wu C., “Effect of heat transfer law on the ecological optimization of a generalized irreversible Carnot engine”, Open Sys. Inf. Dyn., 12, 249 - 60, 2005.
  • [14] Li J., Chen L., Sun F., “Ecological performance of an endoreversible Carnot heat engine with complex heat transfer law”, Int. J. Sustainable Energy, 30, 55 - 64, 2011.
  • [15] Li J., Chen L., Sun F., “Ecological performance of a generalized irreversible Carnot heat engine with complex heat transfer law”, Int. J. Energy and Environment, 2, 57 - 70, 2011.
  • [16] Tu Y., Chen L., Sun F., “Wu C., Exergy-based ecological optimization for an endoreversible Brayton refrigeration cycle”, Int. J. Exergy, 3, 191 - 201, 2006.
  • [17] Chen L., Zhu X., Sun F., Wu C., “Ecological optimization for generalized irreversible Carnot refrigerators”, J. Phys. D: Appl. Phys., 38, 113 - 18, 2005.
  • [18] Zhu X., Chen L., Sun F., Wu C., “Exergy based ecological optimization for a generalized irreversible Carnot refrigerator”, J. Energy Institute, 79, 42 - 46, 2006.
  • [19] Chen L., Zhu X., Sun F., Wu C., “Ecological optimization of a generalized irreversible Carnot refrigerator for a generalized heat transfer law”, Int. J. Ambient Energy, 28, 213 - 19, 2007.
  • [20] Li J., Chen L., Sun F., Wu C., “Ecological performance of an endoreversible Carnot refrigerator with complex heat transfer law”, Int. J. Ambient Energy, 32, 31 - 36, 2011.
  • [21] Chen L., Li J., Sun F., “Ecological optimization of a generalized irreversible Carnot refrigerator in case of ”, Int. J. Sustainable Energy, 31, 59 - 72, 2012.
  • [22] Tyagi S. K., Kaushik S. C. , Salohtra R., “Ecological optimization , parametric study of irreversible Stirling , Ericsson heat pumps”, J. Phys. D: Appl. Phys., 35, 2058 - 65, 2002.
  • [23] Zhu X., Chen L., Sun F., Wu C., “Effect of heat transfer law on the ecological optimization of a generalized irreversible Carnot heat pump”, Int. J. Exergy, 2, 423 - 36, 2005.
  • [24] Zhu X., Chen L., Sun F., Wu C., “The ecological optimization of a generalized irreversible Carnot heat pump for a generalized heat transfer law”, J. Energy Institute, 78, 5- 10, 2005.
  • [25] Chen L., Li J., Sun F., Wu C., “Effect of a complex generalized heat transfer law on ecological performance of an endoreversible Carnot heat pump”, Int. J. Ambient Energy, 30,102 - 08, 2009.
  • [26] Li J, Chen L, Sun F., “Optimal ecological performance of a generalized irreversible Carnot heat pump with a generalized heat transfer law”, Termotehnica Thermal Engineering, 13, 61 - 8, 2009.
  • [27] Liu X., Chen L., Wu F., Sun F., “Ecological optimization of an irreversible harmonic oscillators Carnot heat engine”, Science in China Series G: Physics, Mechanics & Astronomy, 52, 1976 -88, 2009.
  • [28] Wang W., Chen L., Sun F., Wu C., “Optimal heat conductance distribution, optimal intercooling pressure ratio for power optimization of an irreversible closed intercooled regenerated Brayton cycle”, Journal of Energy Institute, 79, 116 - 19, 2006.
  • [29] Wang W., Chen L., Sun F., “Ecological optimization of an irreversible ICR gas turbine cycle”, Int. J. Exergy, 9, 66-79, 2011.
  • [30] Tyagi S.K., Kaushik S.C., Salhotra R., “Ecological optimization, performance study of irreversible Stirling , Ericsson heat engines”, J. Phys. D: Appl. Phys. 35, 2668–75, 2002.
  • [31] Zhu X., Chen L., Sun F., Wu C., “Exergy – based ecological optimization for a generalized Carnot refrigerator”, Journal of Energy Institute 79, 42 – 6, 2006.
  • [32] Wu C., Chen L., Sun F., “Ecological optimization performance of an irreversible quantum SI engine powering with an ideal Fermi gas”, Open Sys. & Information Dynamic 13, 55 - 66, 2006.
  • [33] Ust Y., Sahin B., Sogut O. S., “Performance analysis, optimization of an irreversible dual – cycle based on an ecological coefficient of performance criterion”, Applied energy 82, 23 – 39, 2005.
  • [34] Ust Y., Sahim B., “Performance optimization of irreversible refrigerators based on a new thermo – ecological criterion”, International Journal of Refrigeration 30, 527 – 34, 2007.
  • [35] Ust Y., Sahin B., Kodal A., Akcay I. H., “Ecological coefficient of performance analysis, optimization of an irreversible regenerative – Brayton heat engine”, Applied Energy 83, 558 – 72, 2006.
  • [36] Sogut S. S., Ust Y., Sahin B., “The effects of intercooling , regeneration on thermo – ecological performance analysis of an irreversible – closed Brayton heat engine with variable – temperature thermal reservoirs”, J. Phys. D: Appl. Phys. 39, 4713–21, 2006.
  • [37] Ust Y., “Effect of regeneration on the thermo-ecological performance analysis, optimization of irreversible air refrigerators”, Heat and Mass Transfer, 46, 469-478, 2010.
  • [38] Ust Y., “Performance analysis, optimization of irreversible air refrigeration cycles based on ecological coefficient of performance criterion”, Applied Thermal Engineering, 29, 47-55, 2009
  • [39] Ust Y., Sogut O.S., Sahin B., Durmayaz A., “Ecological coefficient of performance ECOP optimization for an irreversible Brayton heat engine with variable-temperature thermal reservoirs”, Journal of the Energy Institute, 79, 47-52, 2006.
  • [40] Ust Y., Sahin B., Kodal A., “Performance analysis of an irreversible Brayton heat engine based on ecological coefficient of performance criterion”, International Journal of Thermal Science, 45, 94-101, 2006.
  • [41] Ust Y., Sahin B., Kodal A., “Ecological coefficient of performance ECOP optimization for generalized irreversible Carnot heat engines”, Journal of the Energy Institute, 78, 145-151, 2005.
  • [42] Ust Y., Sahin B., Safa A., “Ecological performance analysis of an Endoreversible Regenerative Brayton heat-engine”, Applied Energy, 80, 247-260, 2005.
  • [43] Ust Y., Akkaya A.V., Safa A., “Analysis of a vapour compression refrigeration system via exergetic performance coefficient criterion”, Journal of the Energy Institute , 84, 66 – 72, 2011.
  • [44] Akkaya A.V., Sahin B., Erdem H.H., “An analysis of SOFC/GT CHP system based on exergetic performance criteria”, International Journal of Hydrogen Energy, 10, 2566-2577, 2008.
  • [45] Akkaya A.V., Sahin B., Erdem H.H., “Exergetic performance coefficient analysis of a simple fuel cell system”, International Journal of Hydrogen Energy, 17, 4600 – 4609, 2007.
  • [46] Ust Y., Sahin B., Kodal A., “Optimization of a dual cycle cogeneration system based on a new exergetic performance criterion”, Appl Energy, 84, 1079 - 1091, 2007.
  • [47] Ust Y., Sahin B., Yilmaz T., “Optimization of a regenerative gas-turbine cogeneration system based on a new exergetic performance criterion: Exergetic Performance Coefficient EPC”, Proceedings of the Institution of Mechanical Engineers Part A: Journal of Power, Energy, 221, 447 - 456, 2007.
  • [48] Abu-Nada E., Al-Hinti I., Al-Aarkhi A., Akash B., “Thermodynamic modeling of a spark-ignition engine: effect of temperature dependent specific heats”, Int. Comm. Heat Mass Transfer, 32, 1045 – 1056, 2005.
  • [49] Ge Y., Chen L., Sun F., Wu C., “Thermodynamic simulation of performance of an Otto cycle with heat transfer , variable specific heats for the working fluid”, Int. J. Therm. Sci., 44, 506–511, 2005.
  • [50] Ge Y., Chen L., Sun F., Wu C., “The effects of variable specific-heats of the working fluid on the performance of an irreversible Otto cycle”, Int. J. Exergy, 2, 274 – 283, 2005.
  • [51] Ge Y., Chen L., Sun F., Wu C., “Effects of heat transfer, friction , variable specific-heats of a working fluid on performance of an irreversible Dual cycle”, Energy Convers. Manage, 47, 3224–3234, 2006.
  • [52] Al-Sarkhi A., Jaber J.O., Abu-Qudais M., Probert S.D., “Effects of friction, temperature-dependent specific-heat of the working fluid on the performance of a Diesel-engine”, Appl Energy, 83, 153 – 165, 2006.
  • [53] Ge Y., Chen L., Sun F., “Finite- time thermodynamic modeling, analysis for an irreversible dual cycle”, Math Comput Model, 50, 101-108, 2009.
  • [54] Ge Y., Chen L., Sun F., “Finite- time thermodynamic modeling, analysis for of an irreversible Diesel cycle”, P I Mech Eng D-J Aut, 222, 887-894, 2008.