INVESTIGATION OF SOME SOIL MICROBIOLOGICAL PROPERTIES OF RHIZOSPHERE SOIL OF HALOPHYTIC FORAGE PLANTS

The purpose of this study was to determine the halophytic forage crops and some microbiological properties i.e. catalase activity, dehydrogenase activity, microbial biomass carbon and basal soil respiration of rhizosphere soils. Halophytic forage crops like Salsola crassa, Salsola dendroides, Cressa cretica, Salsola soda, Alopecurus myosuroides, Prosopis farcta, Alhagi pseudalhagi, Tamarix smyrnensis, Chenopodium album, Chenopodium sp. were widely determined in Harran Plain, Turkey. Rhizosphere soil samples of these crops were collected from rhizosphere of each plant. The rhizosphere soils were analyzed by measuring microbiological properties i.e. basal soil respiration, microorganism population, microbial biomass carbon, catalase and dehydrogenase activities. Basal soil respiration and microbial biomas carbon content of samples were between 10.67-62.3 µg CO2 /g dry soil and 104.47-216.59 µg C/ g dry soil, respectively. Soil basal respiration was obtained highest in the rhizosphere of Salsola soda. Enzyme activities were affected by the rhizosphere soils, depending on the plant species. Catalase activity and dehydrogenase activity were highest in the rhizosphere of Alopecurus myosuroides, 12.3 ml O2 /5g soil and 348.36 µg TPF/ g dry soil, respectively.

___

  • [1] Aydemir S., Çullu M.A., Polat T., Sönmez O., Dikilitaş M., Akıl A., (2008). Tuzlanma etkisinde kalan Şanlıurfa-Harran Ovası topraklarının kullanım durumları ve iyileştirilebilme olanakları. Sulama-Tuzlanma Konferansı. 12-13 Haziran, s 45-62 Şanlıurfa.
  • [2] Aygün C., Olgun M., (2010). Tuzlu toprakların ıslahında çalıların kullanımı. I.Toprak Su Kongresi Bildiriler Kitabı Eskişehir s. 873-876 (in Turkish)
  • [3] Tan M., Serin Y., (2011). Baklagil Yem Bitkileri. Atatürk Üniversitesi Ziraat Fakültesi Ders Yayınları No: 190, Erzurum (in Turkish).
  • [4] Acar R., Dursun S., (2010). Vegetative methods to prevent wind erosion in central Anatolia region. International Engineering Conference on Hot Arid Region (IECHAR 2010), Al-Ahsa, KSA, p. 167-170.
  • [5] Öztürk M., Altay V., Altundağ E., Gücel S., (2016). Halophytic Plant Diversity of Unique Habitats in Turkey: Salt Mine Caves of Çankırı and Iğdır. Halophytes for Food Security in Dry Lands 3, 291-315.
  • [6] Makoi J.H.J.R., Ndakidemi P.A., (2008). Selected soil enzymes: examples of their potential roles the ecosystem. Afr. J. Biotechnology 7, 181–191.
  • [7] Garcia, C., A, Roldan., and T, Hernandez. (2005). Ability of different plant species to promote microbiological processes in semiarid soil. Geoderma 124, 193-202.
  • [8] Liu J., Xie J., Chu Y., Sun C., Chen C., Wang Q., (2008). Combined effect of cypermethrin and copper on catalase activity in soil. J Soils Sediments 8, 327-332.
  • [9] Tripathi S., Kumari S., Chakraborty A., Gupta A., Chakraborty K., (2006). Microbial biomass and its activities in salt affected coastal soils. Biology and Fertility of Soils 42, 273-277.
  • [10] Anonymous, (2011). Şanlıurfa İl Çevre ve Orman Müdürlüğü Çalışmaları, Şanlıurfa, s.16 (in Turkish).
  • [11] Davis, PH. (1965). Flora of Turkey and The East Aegean Islands, Volume: 1-10, Edinburgh University Press, Edinburgh.
  • [12] Donner, J. (1990). Flora of Turkey, Linzer Biol. Beitr. p. 1-10.
  • [13] Güner, A., Özhatay, N., Başer, K.H.C. (2000). Flora of Turkey and The East Aegean Islands, Volume:11, Edinburgh University Press, Edinburgh
  • [14] Kızılkaya, R., Dengiz O., (2010). Variation of land use and land cover effects on some soil physico-chemical characteristics and soil enzyme activity. Zemdirbyste-Agriculture 97, 15‒24.
  • [15] Aşkın T., Kızılkaya, R., (2009). Soil basal respiration and dehydrogenase activity of aggregates: A study in toposequence of pasture soil. Zemdirbyste–Agriculture 99, 98–112.
  • [16] Bencherif K., Boutekrabt A., Fontaine J., Laruelle F., Dalpè Y., Lounès A., (2015). Impact of soil salinity on arbuscular mycorrhizal fungi biodiversity and microflora biomass associated with Tamarix articulata Vahll rhizosphere in arid and semi-arid Algerian areas. Science of The Total Environment 533, 488-494.
  • [17] Liu, C., J.M. Xu, N.F. Ding, Q. Fu, B. Guo, Y.L.H. Li and N. Li, (2013). The effect of long-term reclamation on enzyme activities and microbial community structure of saline soil at Shangyu. China Environ Earth Sci. 69, 151–159.
  • [18] Cai, W., Jia Z., Yang C., Wang Y., (2015). Rhizospheric Denitrification Potential and Related Microbial Characteristics Affected by Sec ondary Salinization in a Riparian Soil. Geomicrobiology Journal 32, 624–634.
  • [19] Semedo, L.T.A.S., Linhares, A.A., Gomes, R.C., Manfio, G.P., Alviano, C.S., Linhares, L.F., Coelho, R.R.R. (2001). Isolation and characterization of actinomycetes from Brazilian tropical soils. Microbiological Researchers 155, 291-299.
  • [20] Saviozzi A., Cardelli R., Di Puccio R., (2011). Impact of salinity on soil biological activities: laboratory experiment. Comm. Soil Sci. Plant Analysis 42, 358-367.
  • [21] Gill-Sotres F., Trasar-Cepeda C., Leiros M.C., Seoane S., (2005). Different approaches to evaluate soil quality using biochemical properties. Soil Biology and Biochemistry 37,877-887.
  • [22] Ouni, Y., A, Lakhdar., M, Rabhi., A, Smaoui. A., and A, Chedly. (2013). Effects of the halophytes Tecticornia indica and Suaeda frutıcosa on soil enzyme activities in a mediterranean Sabkha. International Journal of Phytoremediation 15(2),188-97.
  • [23] Cao D., Shi F., Koike T., Lu Z., Sun J., (2014). Halophytic plant communities affecting enzyme activity and microbes in saline soils of the Yellow River Delta in China. Clean-Soil, Air, Water 42, 1433-1440
  • [24] Yuan B.C., Li Z.Z., Liu H., Gao M., Zhang Y., (2007). Microbial biomass and activity in salt affected soils under arid conditions. Applied Soil Ecology 35, 319-328.
  • [25] Akinshina N.A., Azizov A., Karasyova K., Klose E., (2016). On the issue of halophytes as energy plants in saline environment. Biomass and Bioenergy 91, 306-311.
  • [26] Kumar A., Kumar A., Lata C., Kumar S., (2016). Eco-physiological responses of Aeluropus lagopoides (grass halophyte) and Suaeda nudiflora (non-grass halophyte) under individual and interactive sodic and salt stress. South African Journal of Botany 105, 36-44.