THE ATMOSPHERIC TRANSPORTED DESERT DUST OVER SANLIURFA (TURKEY) AND ITS STRUCTURAL PROPERTIES

THE ATMOSPHERIC TRANSPORTED DESERT DUST OVER SANLIURFA (TURKEY) AND ITS STRUCTURAL PROPERTIES

In this study, atmospheric dust samples were collected via Partisol 2025 ID device working in EPA mode by using PM10 (Particulate matter less than 10 microns) filter during 2016-2017 from Sanliurfa, Turkey. The arrival direction and source detection of atmospheric dust was determined by the MODIS satellite view and HYSPLIT model. The structure of the samples was characterized by XRD (X-Ray Diffraction), SEM (Scanning Electron Microscopy) combined with EDX (Energy Dispersive X-ray) and FTIR (Fourier Transformed Infrared Spectrum). Results show that the major phases observed in the XRD spectrum of the samples are calcite, dolomite, gibbsite, anorthite, and sodium borate hydroxide. The compositions of dust samples were found to be Ca, Si, Al, Na, and Mg in a higher ratio than other elements via SEM-EDX analysis. Further, this study reveals the variability of PM morphological and elemental composition on different days at locations and highlighted the different probable sources associated with them.

___

  • ⦁ [1] Gonzalez-Martin, C., Coronado-Alvarez, N.M., Teigell-Perez, N., Diaz-Solano, R., Exposito, F.J., Diaz, J.P., Griffin, D.W. & Valladares, B. (2018). Analysis of the Impact of African Dust Storms on the Presence of Enteric Viruses in the Atmosphere in Tenerife, Spain Aerosol Air Qual. Res.18.1863–1873.
  • ⦁ [2] Mitsakou, C., Kallos, G., Papantoniou, N., Spyrou, C., Solomos, S., Astitha, M. & Housiadas, C. (2008). Saharan dust levels in Greece and received inhalation doses. Atmos. Chem. Phys. 8(23),7181-7192.
  • ⦁ [3] Kallos, G., Astitha, M., Katsafados, P. & Spyrou, C. (2007). Long-range transport of anthropogenically and naturally produced particulate matter in the Mediterranean and North Atlantic: Current state of knowledge. J. Appl. Meteor. Climatol. 46,81230-1251.
  • ⦁ [4] Querol, X., Alastuey, A., Ruiz, C.R., Artiñano, B., Hansson, H. C., Harrison, R. M. & Straehl, P. (2004). Speciation and origin of PM10 and PM2.5 in selected European cities. Atmos. Environ. 38(38), 6547-6555.
  • ⦁ [5] Akbari, B., Tavandashti, M.P. & Zandrahimi, M. (2011). Particle size characterization of nanoparticles–a practicalapproach. Iran. J. Mater. Sci. Eng. 8. 4
  • ⦁ [6] Saliba, N., Massoud, R., Shihadeh, A.L., Roumié, M., Youness, M., Gerard, J. and Saliba, & N. A. (2011). Intraurban variability of PM10 and PM2.5 in an Eastern Mediterranean city. Atmos. Res.101(4),893-901.
  • ⦁ [7] Al-Awadh, M.S. (2013). U.S. Patent No. 8,424,573. Washington, DC: U.S. Patent and Trademark Office.
  • ⦁ [8] Balal, O., Eisa, S. & Asgar, S. (2018). Characterızatıon And Morphologıcal Analysıs Of Aerosols In Tehran Traffıc Zone. J.Air Poll.Health.3,1. 9- 16
  • ⦁ [9] Aleksandropoulou, V. & Lazaridis, M. (2013). Identification of the influence of African dust on PM10 concentrations at the Athens air quality monitoring network during the period 2001–2010. Aerosol Air Qual Res. 13.1492-1503.
  • ⦁ [10] Shaltout, A.A., Welz, B. & Castilho, I.N.B. (2013). Determinations of Sb and Mo in Cairo’s dust using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis. Atmos Environ. 81, 18–24
  • ⦁ [11] Alghamdi, I. G., Hussain, I. I., Alghamdi, M. S., Dohal, A. A., Almalki, S. S. & El-Sheemy, M. A. (2015). The incidence rate of thyroid cancer among women in Saudi Arabia: an observational descriptive epidemiological analysis of data from Saudi Cancer Registry 2001–2008. J Imiigr Minor Healt. 17.3.638-643.
  • [12] Alharbi, F.H. & Kais, S. (2015). Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence. Renew Sust Energ Rev. 43.1073-1089.
  • ⦁ [13] Habeebullah, T. M., Munir, S., Mohammed, A. M., Morsy, E. A., Rehan, M. & Ali, K. (2016): Analysing PM2.5 and its association with PM10 and meteorology in the arid climate of Makkah, Saudi Arabia. Aerosol Air Qual. Res. 17.453-464.
  • ⦁ [14] Buseck, P.R. & Posfai, M. (1999). Airborne minerals and related aerosol particles: Effects on climate and the environment. Proc. Natl. Acad. Sci. 96(7), 3372-3379.
  • ⦁ [15] Prospero, J.M. (1999). Assessing the impact of advected African dust on air quality and health in the eastern United States; Human and Ecological Risk Assessment. An International Journal. 5(3), 471-479.
  • ⦁ [16] Clarke, A.D., Collins, W.G., Rasch, P.J., Kapustin, V.N., Moore, K., Howell, S. & Fuelberg, H.E. (2001). Dust and pollution transport on global scales: aerosol measurements and model predictions. J. Geophys. Res. 106.32555-32569.
  • ⦁ [17] Bishop, J.B.K., Davis, R.E. & Sherman, J.T. (2002). Robotic observations of dust storm enhancement of carbon biomass in the North Pacific. Science. 298. 817-821
  • ⦁ [18] Singer, A., Ganor, E., Dultz, S. & Fischer, W. (2003). Dust deposition over the Dead Sea. J. Arid Environ. 53. 41-59.
  • ⦁ [19] Engelbrecht, J.P., McDonald, E.V., Gillies, J.A., Jayanty, R.K.M., Casuccio, G. and Gertler, A.W. (2009): Characterizing mineral dusts and other aerosols from the Middle East—Part 1: ambient sampling. Inhal Toxıcol. 21,297–326.
  • ⦁ [20] Zarasvandi, A., Carranza, E. J. M., Moore, F. & Rastmanesh, F. (2011). Spatio-temporal occurrences and mineralogical–geochemical characteristics of airborne dusts in Khuzestan Province (southwestern Iran). J Geochem Explor. 111,(3). 138-151.
  • ⦁ [21] Jeong, G.Y. & Achterberg, E.P. (2014). Chemistry and mineralogy of clay minerals in Asian and Saharan dusts and the implications for iron supply to the oceans. Atmos. Chem. Phys. 14. 12415–12428.
  • ⦁ [22] Jeong, G.Y., Park, M.Y., Kandler, K., Nousiainen, T. & Kemppinen, O. (2016). Mineralogical properties and internal structures of individual fine particles of Saharan dust. Atmos. Chem. Phys. 16,19 . 12397-12410.
  • ⦁ [23] Bergametti, G., Gomes, L., Coudé‐Gaussen, G., Rognon, P., & Le Coustumer, M.N. (1989). African dust observed over Canary Islands: Source‐regions identification and transport pattern for some summer situations. J. Geophys. Res. Atmos. 94(12),14855-14864.
  • ⦁ [24] Merrill, J., Arnold, E., Leinen, M. & Weaver, C. (1994). Mineralogy of aeolian dust reaching the North Pacific Ocean: 2. Relationship of mineral assemblages to atmospheric transport patterns. J. Geophys. Res. 99, 21025-21032.
  • [25] Davis, B.L. & Guo, J. (2000). Airborne particulate study in five cities of China. Atmos. Environ.34. 2703-2711.
  • ⦁ [26] Ganor, E., Deutsch, Y. and Foner, H.A. (2000): Mineralogical composition and sources of airborne setting particles on Lake Kinner et (the Sea of Galilee), Palestine. Water Air Soil Poll. 118.245-262.
  • [27] Mamouri, R. E., Ansmann, A., Nisantzi, A., Solomos, S., Kallos, G. & Hadjimitsis, D. G. (2016). Extreme dust storm over the eastern Mediterranean in September 2015: satellite, lidar, and surface observations in the Cyprus region. Atmos. Chem. Phys. 16(21), 13711-13724.
  • ⦁ [28] Gonzalez, L.T., Longoria Rodríguez, F.E., Sanchez-Domínguez, M., Leyva-Porras, C., Silva-Vidaurri,L.G., Acuna-Askar, K., Kharisov, B.I., Villarreal Chiu, J.F., Alfaro Barbosa J.M., (2016). Chemical and morphological characterization of TSP and PM2.5 by SEM-EDS, XPS and XRD collected in the metropolitan area of Monterrey, Mexico. Atmos Envıron.143. 249-260.
  • ⦁ [29] Shaltout, A.A., Allam M.A., Mostafa, N.Y., & Heiba Z.H. (2016): Spectroscopic Characterization of Dust-Fall Samples Collected from Greater Cairo, Egypt. Arch Environ Contam Toxicol. 70, 544–555.
  • ⦁ [30] Godelitsas, A., Nastos, P., Mertzimekis T.J., Toli, K., Simon, R., & Göttlicher, J., (2011). A microscopic and Synchrotron-based characterization of urban particulate matter (PM10–PM2.5 and PM2.5) from Athens atmosphere, Greece. Nucl Instrum Methods.3077–3081.
  • ⦁ [31] Jeong, G.Y. (2008). Bulk and single‐particle mineralogy of Asian dust and a comparison with its source soils. J. Geophys. Res. Atmos.113 D2
  • ⦁ [32] Freedman, M.A. (2015). Potential sites for ice nucleation on aluminosilicate clay minerals and related materials. J. Phys. Chem. Lett. 6,19.3850-3858.
  • ⦁ [33] Shaltout, A.A., Allam, M.A., Mostafa N.Y. & Heiba Z.K. (2016). Spectroscopic Characterization of Dust-Fall Samples Collected from Greater Cairo, Egypt, Arch Environ Con Tox. 70,544–555.
  • ⦁ [34] Rashki, A., Eriksson, P.G., Rautenbach, C.D.W., Kaskaoutis, D.G., Grote, W. & Dykstra, J. (2013). Assessment of chemical and mineralogical characteristics of airborne dust in the Sistan region, Iran. Chemosphere. 90,2. 227-236.
  • ⦁ [35] Dibblee, T.W. (1967): Areal geology of the western Mojave Desert, California.
  • ⦁ [36] Prakash, J.P., Stenchikov, G., Tao, W., Yapici, T., Warsama, B. & Engelbrecht, J.P. (2016): Arabian Red Sea coastal soils as potential mineral dust sources. Atmos. Chem. Phys. 16,18: 11991-12004.
  • ⦁ [37] Senthil Kumar, R., & Rajkumar P. (2014). Characterization of minerals in air dust particles in the state of Tamilnadu, India through FTIR, XRD and SEM analyses. Infrared Phys Techn. 67, 30–41.
  • ⦁ [38] Radulescu, C., Stihi, C., Iordach, J., Dunea, S., & Dulama, I.D. (2017). Characterization of Urban Atmospheric PM2.5 by ATR-FTIR, ICP-MS and SEM-EDS Techniques. Rev Chım. 68:4.