PMN-PT-PMS SERAMİKLERİNDE SİNTERLEME SICAKLIĞI ETKİSİYLE YAPISAL VE ELEKTRİKSEL ÖZELLİKLERİN OPTİMİZASYONU

PMS [Pb(Mn1/3Sb2/3)O3] ile katkılanmış PMN-PT [Pb(Mg1/3Nb2/3)O-PbTiO3] üçlü piezoelektrik seramikleri (PMN-PT-PMS) 1100-1250 °C aralığında farklı sinterleme sıcaklıklarının kullanıldığı katı-hal reaksiyon yöntemi ile üretilmiştir. Sinterleme sıcaklığının kristal fazlar, mikroyapı ve elektriksel özellikler üzerindeki etkisi sistematik olarak incelenmiştir. Mikroyapı ve kompozisyon analizleri taramalı elektron mikrosko u SEM ve X-ışınları kırınımı XRD ile, elektriksel karakterizasyon ise indüktans-kapasitans-direnç ölöer LCR metre , empedans analizöru ve Berlincourt d33-piezometre kullanılarak gerçekleştirilmiştir. XRD ve SEM sonuçları, saf perovskit yapının ve homojen ir mikroyapının elde edilmesinde sinterleme sıcaklığının etkili olduğunu ortaya koymuştur. 1150 °C ve altındaki sinterleme sıcaklıklarında yoğunlaşma yetersiz olmakta ve saf perovskit yapı elde edilememekte, 1200 °C'nin üstündeki sıcaklıklarda ise kurşun oksitin uçuculuğu nedeniyle heterojen ir mikroyapı oluşmaktadır. Uygun sinterleme sıcaklığında elde edilen yüksek yoğunluk ve homojen mikroyapı; PMN-PT-PMS seramiklerinin yüksek piezoelektrik ve dielektrik davranış sergilemesini sağlamaktadır. Deneysel sonuçlar, 1175 °C'de 2 saat süre ile sinterlenmiş numunelerin optimum elektriksel özellikler d33=265 pC/N, KT=4745, kp=0,417, tan?=%2,5 ve Qm=222) sergilediğini göstermiştir

Optimizing Structural and Electrical Properties of PMN-PT-PMS Ceramics via Sintering Temperature

Pseudo-ternary piezoelectric ceramics of PMN-PT [Pb(Mg1/3Nb2/3)O3-PbTiO3] composition modified with PMS [Pb(Mn1/3Sb2/3)O3] were produced by solid-state sintering method using different temperatures in a range of 1100-1250 °C. The effect of sintering temperature on the crystal phases, microstructure and electrical properties were systematically investigated. Microstructural and compositional analyses have been carried out using scanning electron microscope (SEM) and X-ray diffraction (XRD). Besides, electrical characterization was performed using an inductance-capacitanceresistance (LCR) meter, impedance analyzer and a Berlincourt d-piezometer. XRD and SEM results indicated that the sintering temperature was effective on the formation of a homogeneous microstructure and a pure perovskite structure. Densification during sintering could not be completed and pure perovskite structure was not o tained at 1150 °C and lower sintering temperatures. Furthermore, sintering at temperatures higher than 1200 °C resulted in heterogeneous microstructure. The high dielectric and piezoelectric response of PMN-PT-PMS ceramics is considered to be a result of their high densities and homogeneous microstructure obtained via proper sintering condition. The results showed that the ceramic samples sintered at 1175 °C for 2 h possessed the optimum properties (d33=265 pC/N, KT=4745, kp=0.417, tan?=2.5%, Qm=222)

___

  • Aydın H.S., 2016, PMN-PT[Pb(Mg1/3Nb2/3)O3-PbTiO3] Esaslı Piezoelektrik Seramiklerin Üretimi ve Karakterizasyonu, Yüksek Lisans Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya.
  • Aydın H.S., Kalem V., 2016, ,PMN-PT [Pb(Mg1/3Nb2/3)O3-PbTiO] Esaslı Seramiklerde Kompozisyonun Yapısal ve Elektriksel Özelliklere Etkisi', Selçuk Üniversitesi Mühendislik Bilim ve Teknoloji Dergisi, Vol. 4, No. 2, pp. 100-110.
  • Bouquin, O., Lejeune, M., Boilot, J.P., 1991, ,Formation of The Perovskite Phase in the PbMg1/3Nb2/3O3- PbTiO3 system', Journal of the American Ceramic Society, Vol.74, No. 5, pp. 1152-56.
  • Carter, C.B., Norton, M.G., 2007, Ceramic Materials: Science and Engineering, Springer, New York.
  • Choi, S.W., Shrout, T.R., Jang, S.J., Bhalla, A.S., 1989, ,Dielectric and Pyroelectric Properties in The Pb(Mg1/3Nb2/3)O3-PbTiO3 system', Ferroelectrics, Vol. 100, pp. 29-38.
  • Guha, J.P., 1999, ,Reaction Chemistry and Subsolidus Phase Equilibria in Lead-based Relaxor Systems: Part I - Formation and Stability of The Perovskite and Pyrochlore Compounds in The System PbO-MgO-Nb2O5', Journal of Materials Science, Vol. 34, No. 20, pp. 4985-94.
  • Hai, L., Bo-Ping, Z., Yu, P., Lei, Z., Kai-sheng, W., Yan-tao, L., 2015, ,Effects of Sintering Temperature on Structure and Properties of BY-PT-PMN Ternary Piezoelectric Ceramics', Journal of Materials Research, Vol. 30, No. 6, pp. 782-790.
  • Hoffmann, M.J., Hammer M., Endriss A., Lupascu D.C., 2001, ,Correlation Between Microstructure, Strain Behavior, and Acoustic Emission of Soft PZT Ceramics', Acta Materialia, Vol.49, pp. 1301-1310.
  • Inada, M., 1977, ,Analysis of The Formation Process of the Piezoelectric PCM Ceramics', National Technical Report (Matsushita Elect. Ind. Co.), Vol. 27, No. 1, pp. 95-102.
  • Ketsuwan, P., Ngamjarurojana, A., Laosiritaworn, Y., Ananta, S., Yimnirun, R., 2007, ,Effect of Sintering Temperature on Phase Formation, Dielectric, Piezoelectric, and Ferroelectric Properties of Nb- Doped Pb(Zr0.52Ti0.48)O3 Ceramics', Ferroelectrics, Vol. 358, pp. 35-41.
  • Liu, L., Fan, H., Ke, S., Chen, X., 2008, ,Effect of Sintering Temperature on The Structure and Properties of Cerium-Doped 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 Piezoelectric Ceramics', Journal of Alloys and Compounds, Vol. 458, pp. 504-508.
  • Naceur, H., Megriche, A., El Maaoui, M., 2014, ,Effect of Sintering Temperature on Microstructure and Electrical Properties of Sr1-x(Na0.5Bi0.5)xBi2Nb2O Solid Solutions', Journal of Advanced Ceramics, Vol. 3, No. 1, pp. 17-30.
  • Shrout, T.R., Swartz, S.L., 1983, ,Dielectric-properties of Pyrochlore Lead Magnesium Niobate', Materials Research Bulletin, Vol. 18, No. 6, pp. 663-7.
  • Swartz, S.L., Shrout, T.R., 1982, ,Fabrication of Perovskite Lead Magnesium Niobate', Materials Research Bulletin, Vol.17, No. 10, pp. 1245-50.
  • Takahashi, S., Sasaki, Y., Kawai, H., Hirose, S., 1996, ,High-power Piezoelectric Characteristics in Pb(Mo1/3Sb2/3)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 Solid Solution System', Isaf '96 - Proceedings of the Tenth Ieee International Symposium on Applications of Ferroelectric, Vol.1, pp. 2309-312.
  • Takahashi, S., Yamamoto, M., Sasaki, Y., 1998, ,Nonlinear Piezoelectric Effect in Ferroelectric Ceramics', Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, Vol. 37, No. 9B, pp. 5292-6.
  • Taşpınar, E., 1997, Production and Characterization of Lead Zirconate Titanate and Lead Magnesium Niobate- Lead Titanate Piezoceramics, Yüksek Lisans Tezi, Orta Doğu Teknik Üniversitesi, Ankara.
  • Wakiya, N., Kim, B.H., Shinozaki, K., Mizutani, N., 1994, ,Composition Range of Cubic Pyrochlore Type Compound in Lead Magnesium Niobium Oxygen System', Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi-Journal of the Ceramic Society of Japan, Vol.102, No. 6, pp. 612-615.
  • Wakiya, N., Saiki, A., Ishizawa, N., Shinozaki, K., Mizutani, N., 1993, ,Crystal-growth, Crystal-structure and Chemical-composition of a Pyrochlore Type Compound in Lead-magnesium-niobium- oxygen System', Materials Research Bulletin, Vol. 28, No. 2, pp. 137-143.
  • Zhu, R., Yin, Y., Fang, B., Chen, Z., Zhang, S., Ding, J., Zhao, X., Luo, H., 2016, ,Optimizing Structure and Electrical Properties of High-Curie Temperature PMN-PHT Piezoelectric Ceramics via Tailoring Sintering Process', The European Physical Journal-Applied Physics, Vol. 74, No. 3, pp. 30101.