Mamografide Meme Mikrokalsifikasyonları için Otomatik Bilgisayar Destekli Tespit (CADe) ve Tanı (CADx) Sistemi

Mamografide mikrokalsifikasyon (MC) kümelerinin saptanması için otomatik bir bilgisayar destekli tanı sistemi önerilmiştir. Önerilen sistem şüpheli bölgelerin tanımlanması, MC'lerin tespiti, yanlış pozitif indirgeme ve iyi huylu/kötü huylu sınıflamayı içeren bütün bir sistemdir. Şüpheli mikrokalsifikasyon bölgelerinin sınıflandırılması için, gri seviye eş-oluşum matrisi (GLCM) ve istatistiksel özellikler ile çok tabakalı bir perceptron (MLP) sinir ağı kullanıldı. Daha sonra, yanlış pozitif sınıflandırma oranını azaltmak için, gri seviye çalışma uzunluğu matrisi (GLRLM) özellikli kademeli korelasyon sinir ağı (CCNN) kullanılmıştır. Son adımda, tespit edilen MC kümelerinin iyi huylu/kötü huylu sınıflandırması için GLRLM özellikleri ile hibrid yapıda diskriminant analizi ve destek vektör makinesi (SVM) yöntemleri kullanıldı. Çalışma için açık erişimli Mamografik Görüntü Analizi Derneği (MIAS) veri tabanı kullanılmıştır. Deneysel sonuçlar, önerilen algoritmanın meme kanseri tespiti için %86 duyarlılık, %98.3 özgüllük ve 1.163 FPpI oranları elde ettiğini ve meme kanseri tanısı için elde edilen duyarlılık ve özgüllük değerlerinin sırasıyla %100 ve %100 olduğunu ortaya koymuştur. MC kümelenmelerinin görme zorluğu olsa da, önerilen sistem çok tatmin edici sonuçlar vermektedir. Bununla birlikte, gelişmiş sistem; çıktıları yüzdeler ve dönüştürülmüş değerlendirme kategorileri olarak veren tam otomatik bir bütün sistemdir.

AN AUTOMATED COMPUTER-AIDED DETECTION (CADe) AND DIAGNOSIS (CADx) SYSTEM FOR BREAST MICROCALCIFICATIONS IN MAMMOGRAMS

An automated computer aided diagnosis system has been proposed for detection ofmicrocalcification (MC) clusters in mammograms. The proposed system is a whole system includingsuspicious regions identification, MCs detection, false positive reduction and benign/malignclassification. For classification of suspicious microcalcification regions, a multilayer perceptron (MLP)neural network was used with grey level co-occurrence matrix (GLCM) and statistical features. Then todecrease the false positive classification ratio, we used cascade correlation neural network (CCNN) withgrey level run length matrix (GLRLM) features. In the last step, hybrid form of discriminant analysis andsupport vector machine (SVM) methods were used with GLRLM features for benign/malignclassification of detected MC clusters. The open access Mammographic Image Analysis Society (MIAS)database was used for the study. Experimental results show that the proposed algorithm obtained 86%sensitivity, 98.3% specificity and 1.163 FPpI rates for detection an for diagnosis of breast cancer, theobtained sensitivity and specificity values are 100% and 100% respectively. Despite the vision difficultyof MC clusters, the novel system provides very satisfactory results. Furthermore, the developed systemis fully automatic whole system which gives outputs as percentages and transformed assessmentcategories.

___

  • Albregsten, F., 2008, “Statistical Texture Measures Computed from Gray Level Cooccurrence Matrices”, Technical Note, Department of Informatics, University of Oslo.
  • Bird, R.G., Wallace, T.W., Yankaskas, B.C., 1992, “Analysis of Cancers Missed at Screening Mammography”, Radiology, Vol. 184, pp. 613-617.
  • Bria, A., Karssemeijer, N., Tortorella, F., 2014, “Learning from Unbalanced Data: A Cascade-Based Approach for Detecting Clustered Microcalcifications”, Medical Image Analysis, Vol. 18, pp. 241- 252.
  • Chandra, B., Varghese, P.P., 2007, “Applications of Cascade Correlation Neural Networks for Cipher System Identification”, International Journal of Computer, Information, Systems and Control Engineering, Vol. 1, No. 2, pp. 343-346.
  • Cheng, H.D., Shi, X.J., Min, R., Hu, L.M., Cai, X.P., Du, H.N., 2006, “Approaches for Automated Detection and Classification of Masses in Mammograms”, Pattern Recognition, Vol. 39, pp. 646 – 668.
  • Dennis, J.E., Schnabel, R.B., 1996, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Siam Press, Philadelphia, A.B.D.
  • Dheeba, S., Singh, N.A., Selvi, S.T., 2014, “Computer-Aided Detection of Breast Cancer on Mammograms: A Swarm Intelligence Optimized Wavelet Neural Network Approach”, Journal of Biomedical Informatics, Vol. 49, pp. 45-52.
  • Diaz-Huerta, C.C., Felipe-Riveron, E.M., Montaño-Zetina, L.M., 2014, “Quantitative Analysis of Morphological Techniques for Automatic Classification of Micro-Calcifications in Digitized Mammograms”, Expert Systems with Applications, Vol. 41, pp. 7361–7369.
  • Ergen, B., Baykara, M., 2011, “İstatistiksel Uzaysal Alan Metotlarının Içerik Tabanlı Tıbbi Görüntü Erişimi için Bir Uygulama”, Fırat University Mühendislik Bilimleri Dergisi, Vol. 23, No. 2, pp. 87- 93.
  • Fahlman, S.E., Lebiere, C., “The Cascade-Correlation Learning Architecture”, Advances in Neural Information Processing Systems 2, San Francisco, 1990.
  • Gao, X.Z., Wang, X., Ovaska, S.J., 2009, “Fusion of Clonal Selection Algorithm and Differential Evolution Method in Training Cascade–Correlation Neural Network”, Neurocomputing, Vol. 72, pp. 2483–2490.
  • Halkiotis, S., Botsis, T., Rangoussi, M., 2007, “Automatic Detection of Clustered Microcalcifications in Digital Mammograms Using Mathematical Morphology and Neural Networks”, Signal Processing, Vol. 87, pp. 1559–1568.
  • Haralick, R.M., Shanmugam, K., Dinstein, I., 1973, “Texture Feature for Image Classification”, IEEE Transaction on System, Man and Cybernetics, Vol. 3, No. 6, pp. 610-621.
  • Herwanto, D., Arymurthy, A.M., 2013, “Association Technique Based on Classification for Classifying Microcalcification and Mass in Mammogram”, International Journal of Computer Science, Vol. 10, No. 2, pp. 252-259.
  • Jasmine, J.S.L., Baskaran, S., Govardhan, A.A., 2013, “Robust Approach to Classify Microcalcification in Digital Mammograms Using Contourlet Transform and Support Vector Machine”, American Journal of Engineering and Applied Sciences, Vol. 6, No. 1, pp. 57-68.
  • Jasmine, J.S.L., Govardhan, A., Baskaran, S., “Microcalcification Detection in Digital Mammograms Based on Wavelet Analysis and Neural Networks”, International Conference on Control, Automation, Communication and Energy Conservation, Perundurai, 1-6, 4-6 June 2009.
  • Jelvehfard, E., Faez, K., Laluie, A., 2013, “Microcalcification Detection in Mamography Images Using 2D Wavelet Coefficients Histogram”, Computer Science and Information Technology, Vol. 1, No. 3, pp. 178-184.
  • Karahaliou, A., Skiadopoulos, S., Boniatis, I., Sakellaropoulos, P., Likaki, E., Panayiotakis, G., Costaridou, L., 2007, “Texture Analysis of Tissue Surrounding Microcalcifications on Mammograms for Breast Cancer Diagnosis”, The British Journal of Radiology, Vol. 80, pp. 648- 656.
  • Kovalishyn, V.V., Tetko, I.V., Luik, A.I., Kholodovych, V.V., Villa, A.E.P., Livingstone, D.J., 1998, “Neural Network Studies. 3. Variable Selection in The Cascade-Correlation Learning Architecture”, Journal of Chemical Information and Computer Sciences, Vol. 38, pp. 651-659.
  • Kurt, B., Nabiyev, V.V., Turhan, K., 2015, “A Novel Algorithm for Segmentation of Suspicious Microcalcification Regions on Mammograms”, Lecture Notes in Computer Science, Vol. 9043, pp. 222-230.
  • Martins, L.O., Santos, A.M., Silva, A.C., Paiva, A.C., “Classification of Normal, Benign And Malignant Tissues Using Co-Occurrence Matrix and Bayesian Neural Network in Mammographic Images”, Proceedings of the 9th Brazilian Symposium on Neural Networks, Ribeirao Preto, 24-29, 23- 27 October 2006,.
  • Mazurowskia, M.A., Habasa, P.A., Zuradaa, J.M., Lob, J.Y., Bakerb, J.A., Tourassib, G.D., 2008, “Training Neural Network Classifiers for Medical Decision Making: The Effects of Imbalanced Datasets on Classification Performance”, Neural Networks, Vol. 21, pp. 427-436.
  • Medcalc Statistical Software, http://www.medcalc.org/ ( last modified 2013), last accessed 22 April 2014.
  • Mohamed, H., Mabrouk, M.S., Sharawy, A., 2014, “Computer Aided Detection System for Micro Calcifications in Digital Mammograms”, Computer Methods and Programs in Biomedicine, Vol. 116, pp. 226-235.
  • Mohanalin, J., Beenamol, M., Kalra, P.K., Kumar, N., 2010, “A Novel Automatic Microcalcification Detection Technique Using Tsallis Entropy & Type II Fuzzy Index”, Computers and Mathematics with Applications, Vol. 60, pp. 2426–2432.
  • Mohanty, A.K., Beberta, S., Lenka, S.K., 2011, “Classifying Benign and Malignant Mass Using GLCM and GLRLM Based Texture Features From Mammogram”, International Journal of Engineering Research and Applications, Vol. 1, pp. 687-693.
  • Nocedal, G., Wright, S., 2006, Numerical Optimization, Springer, New York, A.B.D. Pal, N.R., Bhowmick, B., Patel, S.K., Pal, S., Das, J., 2008, “A Multi-Stage Neural Network Aided System for Detection of Microcalcifications in Digitized Mammograms”, Neurocomputing, Vol. 71, pp. 2625– 2634.
  • Phadke, A.C., Rege, P.P., 2013, “Detection and Classification of Microcalcifications Using Discrete Wavelet Transform”, International Journal of Emerging Trends&Technology in Computer Science, Vol. 2, No. 4, pp. 130-134.
  • Radhakrishnan, M., Kuttiannan, T., 2012, “Comparative Analysis of Feature Extraction Methods for The Classification of Prostate Cancer From TRUS Medical Images”, International Journal of Computer Science, Vol. 9, No. 2, pp. 171-179.
  • Rajesh, A., Ellappan, M., 2014, “Classification of Microcalcification Based on Wave Atom Transform”, Journal of Computer Science, Vol. 10, No. 8, pp. 1543-1547.
  • Rizzi, M., D’Aloia, M., Castagnolo, B., 2012, “Review: Health Care CAD Systems for Breast Microcalcification Cluster Detection”, Journal of Medical and Biological Engineering, Vol. 32, No. 3, pp. 147-156.
  • Sabu, M.A., Ponraj, D.N., Poongodi, R., 2012, “Textural Features Based Breast Cancer Detection: A Survey”, Journal of Emerging Trends in Computing and Information Sciences, Vol. 3, No. 9, pp. 1329-1334.
  • Sharma, N., Om, H., 2014, “Cascade Correlation Neural Network Model for Classification of Oral Cancer”, Wseas Transactions on Biology And Biomedicine, Vol. 11, pp. 45-51.
  • Stewart, B.W., Wild, C.P., 2014, World Cancer Report 2014, World Health Organization Press, Swiss.
  • Strange, H., Chen, Z., Denton, E.R.E., Zwiggelaar, R., 2014, “Modelling Mammographic Microcalcification Clusters Using Persistent Mereotopology”, Pattern Recognition Letters, Vol. 47, pp. 157–163.
  • Suba, C., Nirmala, K., 2015, “An Automated Classification of Microcalcification Clusters in Mammograms Using Dual Tree M-Band Wavelet Transform and Support Vector Machine”, International Journal of Computer Applications, Vol. 115, No. 20, pp. 24-29.
  • Thangavel, K., Mohideen, A.K., 2009, “Classification of Microcalcifications Using Multi-Dimensional Genetic Association Rule Miner”, International Journal of Recent Trends in Engineering, Vol. 2, No. 2, pp. 233-235.
  • The American College of Radiology (ACR), ACR BI-RADS® Atlas — Mammography, Frequently Asked Questions, https://www.acr.org/-/media/ACR/Files/RADS/BI-RADS/Mammography-FAQ.pdf, last accessed 22 October 2015.
  • University of Essec, Mamographic Image Analysis Society, http://peipa.essex.ac.uk/info/mias.html, last accessed 22 December 2014.
  • Vivona, L., Cascio, D., Fauci, F., Raso, G., 2014, “Fuzzy Technique for Microcalcifications Clustering in Digital Mammograms”, BMC Medical Imaging, Vol. 14, No.23, pp. 1-18.
  • Xu, D., Kurani, A.S., Furst, J.D., Raicu, D.S., “Run-Length Encoding for Volumetric Texture”, The IASTED International Conference on Visualization, Imaging, and Image Processing, Marbella, Spain, 131-136, 6-8 September 2004.
  • Zyout, I., Czajkowska, J., Grzegorzek, M., 2015, “Multi-Scale Textural Feature Extraction and Particle Swarm Optimization Based Model Selection for False Positive Reduction in Mammography”, Computirized Medical Imaging and Graphics, Vol. 46, No. 2, pp. 95-107.
Selçuk Üniversitesi Mühendislik Bilim ve Teknoloji Dergisi-Cover
  • ISSN: 2147-9364
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2013
  • Yayıncı: Selçuk Üniversitesi Mühendislik Fakültesi
Sayıdaki Diğer Makaleler

YAPILARIN CEPHE KAPLAMA MALZEMELERİNDE HASAR OLUŞTURAN ETKİLERİN TESPİTİ VE ÇÖZÜM ÖNERİLERİ – KONYA PTT HİZMET BİNASI ÖRNEĞİ

Mustafa DERELİ, MUSTAFA TOSUN, Nazım KOÇU

Yapı Sistemlerinde Konsol Çıkmalar ve Burulma Düzensizliği Açısından Deprem Tepkisine Etkileri

Hasan Hüsnü KORKMAZ

MINERALOGICAL AND CHEMICAL CHARACTERISTICS OF THE AMPHIBOLE MINERALS FROM THE METAMORPHIC SOLE ROCKS OF THE LATE CRETACEOUS AGED HATIP OPHIOLITIC MÉLANGE IN THE KONYA AREA (CENTRAL SOUTHERN TURKEY)

KERİM KOÇAK, Raziye Merve KAYA, Adnan DÖYEN, ALİ RIZA SÖĞÜT, VEYSEL ZEDEF

Mamografide Meme Mikrokalsifikasyonları için Otomatik Bilgisayar Destekli Tespit (CADe) ve Tanı (CADx) Sistemi

Burçin KURT, Kemal TURHAN, Vasif V. NABİYEV

MİSİNA İPİNİN BETONUN MEKANİK ÖZELLİKLERİ ÜZERİNE ETKİSİ

Emrah TURAN, MERAL OLTULU

AN AUTOMATED COMPUTER-AIDED DETECTION (CADe) AND DIAGNOSIS (CADx) SYSTEM FOR BREAST MICROCALCIFICATIONS IN MAMMOGRAMS

BURÇİN KURT, Vasif V NABİYEV, KEMAL TURHAN

Zn0.4Cd0.4 COMPOSITE FABRICATION AND CHARACTERIZATION

İSKENDER ÖZKUL, Safiye JAMEEL BİRO

Konya Yöresinde (Orta Güney Türkiye) Geç Kretase Yaşlı Hatip Ofiyolitik Melanjının Metamorfik Taban Kayaçlarındaki Amfibol Minerallerinin Mineralojik Ve Kimyasal Özellikleri

Ali Rıza SÖĞÜT, Kerim KOÇAK, Veysel ZEDEF, Raziye Merve KAYA, Adnan DÖYEN

DETERMINATION OF SOUND TRANSMISSION LOSS IN LIGHTWEIGHT CONCRETE WALLS AND MODELING ARTIFICIAL NEURAL NETWORK

MUSTAFA TOSUN, KEVSER DİNCER

BASİT MESNETLİ TEK AÇIKLIKLI ÇELİK DEMİRYOLU KÖPRÜSÜNÜN DEPREM DAVRANIŞININ KIRILGANLIK EĞRİLERİ YARDIMI İLE DEĞERLENDİRİLMESİ

MEHMET FATİH YILMAZ, barlas ozden caglayan