LiBr-H2O AKIŞKAN ÇİFTİNİ KULLANAN BİR ABSORBSİYONLU SOĞUTMA SİSTEMİ İÇİN TERMODİNAMİK VE EKSERJİ ANALİZİ

Absorpsiyonlu soğutma sistemleri soğutma ve ısıtma amaçlı kullanılarak, çevre korumasının yanında enerji tasarrufu da sağlamaktadır. Sistem diğer soğutma sistemlerine göre daha karmaşık ve soğutma etki katsayısı daha küçük olmasına rağmen atık enerjilerin ve yenilenebilir enerjilerin değerlendirilmesinde en uygun sistemlerdir. Sıkıştırma işlemi diğer sistemlerde kompresörle yapılmasına rağmen, absorpsiyonlu sistemlerde bu işlem absorber ve kaynatıcıdan oluşan bir sistemle gerçekleştirilir. Bu çalışmada, bir absorbsiyonlu soğutma sisteminin termodinamik ve ekserji analizi, LiBr-H2O akışkan çifti için yapılmıştır. Analiz Matlab bilgisayar programında oluşturulan bir matematik model ile gerçekleştirilmiştir. Farklı kaynatıcı, buharlaştırıcı ve absorber çıkış sıcaklıklarında sistemin Performans Katsayısı (STK) ve Ekserji kaybı incelenmiştir. Çalışmanın sonuçları artan kaynatıcı (Tk) ve buharlaştıcı sıcaklıklarının (Tb) ekserji kaybını arttırdığını ve absorber çıkış sıcaklığının (Tabs) artması ile ekserji kayıplarının azaldığını göstermiştir. Ayrıca kaynatıcının çalışma koşullarının çoğunda ekserji kaybının en yüksek oranı sergilediği görülmüştür.

Thermodynamic and Exergy Analysis of an Absorption Cooling System for Libr-H2O Fluid Couple

Absorption cooling systems are used for cooling and heating, saving energy as well as environmental protection. Although the system is more complex than the other cooling systems and the cooling efficiency coefficient is smaller, it is the most suitable system for evaluating waste and renewable energies. Although compression is done by compressor in other systems, in absorptive systems this process is done with a system consisting of absorber and generator. In this study, an energy and exergy analysis of an absorbent refrigeration system was made for the LiBr-H2O fluid couple. The analysis was carried out using a mathematical model developed in the Matlab program. The Performance Coefficient (STK) and Exergy loss of the system were investigated at different generator, evaporator and absorber temperatures. The results of the study showed that loss of exergy was reduced by decreasing Tg, Te and increasing Tabs temperatures, and the loss of exergy in most of the operating conditions of the generator exhibited the highest rate.

___

  • Abdulateef, J. M., Sopian, K., Alghoul, M. A., Sulaiman, M. Y., Zaharim, A., & Ahmad, I., 2007, “Solar absorption refrigeration system using new working fluid pairs”, International Journal of Energy, Vol. 1, No. 3, pp. 82-87
  • Alamdari, G. S., 2007, “Simple functions for predicting the thermodynamic properties of ammonia-water mixture”, Internatıonal Journal of Engineering-Materials And Energy Research Center, Vol.20, No. 1, pp. 95-104.
  • Anusha, B., Chaitanya, B., 2017, “Performance Analysis of Absorption Refrigeration Cycles”, International Journal of Advanced Engineering Research and Science, Vol. 4, No. 1.
  • Azhar, M., Siddiqui, M. A., “Energy and Exergy Analyses for Optimization of the Operating Temperatures in Double Effect Absorption Cycle”, Energy Procedia Vol. 109, pp. 211-218.
  • Bhaumik, M., Mudgal, A., Bhavesh, P., 2017, “Energy and exergy investigation of small capacity single effect lithium bromide absorption refrigeration system”, Energy Procedia, Vol. 109, pp. 203-210.
  • Bouaziz, N., Lounissi, D., 2015, “Energy and exergy investigation of a novel double effect hybrid absorption refrigeration system for solar cooling”, International journal of hydrogen energy, Vol. 40 , No. 39, pp. 13849-13856.
  • Bourseau, P., Bugarel, R., 1986, “Absorption-Diffusion Machines: Comparison of the Performances of NH3-H2O and NH3-NaSCN”, International Journal of Refrigeration, Vol. 9, pp. 206-214.
  • Dehua, C., Guogeng, H., Qigi, T.,Weier, T., 2014, “Exergy analysis of a novel air-cooled non-adiabatic absorption refrigeration cycle with NH3–NaSCN and NH3–LiNO3 refrigerant solutions”, Energy Conversion and Management, pp. 66-78.
  • Farshi, L. G., Ferreira, C. I., Mahmoudi, S. S., Rosen, M. A., 2014, “First and second law analysis of ammonia/salt absorption refrigeration systems”, International journal of refrigeration, Vol. 40, pp. 111-121.
  • Ferreira, I., 1984, “Thermodynamic and Physical Property Data Equations for Ammonia-Lihtium Nitrate and Ammonia-Sodium Thiocyanate Solutions”, Solar Energy, Vol. 32, No. 2, pp. 231-236.
  • Florides, G., Kalogirou, S., 2003, “Design and Construction of a LiBr–Water Absorption Machine”, Energy Conversion And Management, Vol. 44, pp. 2483-2508.
  • Ganesh, N. S., Srinivas, T., 2011, “Evaluation of thermodynamic properties of ammonia-water mixture up to 100 bar for power application systems”, Journal of mechanical engineering research, Vol. 3, No. 1, pp. 25-39.
  • Garousi, F. L., Infante, F. C., Mahmoudi, S.,Rosen, M., 2014, “First and second law analysis of ammonia salt absorption refrigeration systems”, International Journal Of Refrigeration, Vol. 40, pp. 111-121.
  • Lavinia, G., Dobrovicescu, A., Untea, A., 2014, "Energy and exergy analyses of a solar-driven absorption cooling system", International Journal of Exergy, Vol. 15, No. 3, pp. 308-327.
  • Kaita, Y., 2001, “Thermodynamic properties of lithium bromide–water solutions at high temperatures”, International Journal of refrigeration, Vol. 24, No. 5, pp. 374-390.
  • Kaushik, S., Arora, A., 2009, “Energy and Exergy analysis of single effect and series flow double effect water lithium bromide absorption refrigeration systems”, International Journal of Refrigeration, Vol. 32, pp. 1247-1258.
  • Linghui, Z., Junjie, G., 2010, “Second law based thermodynamic analysis of ammonnia sodium thiocyanate absorption system”, Renewable Energy, pp. 1940-1946.
  • Patek, J. P., Klomfor, J., 1995, “Simple Functions for Fast Calculations of Selected Thermodynamic Properties of the Ammonia-Water System”, Int.J.Refring, Vol.4, No. 18, pp. 228-234.
  • Patel, H. A., Patel, L. N., Jani, D., Christian, A., 2016, “Energetic Analysis of Single Stage Lithium Bromide Water Absorption Refrigeration System”, Procedia Technology, Vol. 23, pp. 488-495.
  • Urueta, G. G. , Huicochea, A., Aumente, P. R., Rivera, W., 2014, “Energy and exergy analysis of waterLiBr absorption systems with adiabatic absorbers for heating and cooling”, Energy Procedia, Vol. 57, pp. 2676-2685.
  • Urueta, G. G., Huicochea, A., Rivera, W., Aumente, P. R., & Oviedo-Tolentino, F., 2017, “Experimental energy and exergy analysis of a novel water-LiBr absorption system”, International Journal of Exergy, Vol. 23, No. 1, 31-46.
  • Touaibi, R., Feidt, M., Vasilescu, E. E., Abbes, M. T., 2013, “Parametric study and exergy analysis of solar water–lithium bromide absorption cooling system”, International Journal of Exergy, Vol. 13, No. 3, pp. 409-429.
  • Yağcıoğlu, K. Ç., 2018, Absorbsiyonlu Bir Soğutma Sisteminde Farklı Soğutucu Akışkanlar için Termodinamik ve Ekserji Analizi, Master Thesis, Necmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsü.