KÜPRİK OKSİT/SİLİSYUM HETEROEKLEMLİ NANODİYOTLARIN FOTOVOLTAİK ÖZELLİKLERİ

Aygıt uygulamaları için nanoyapılı materyallerin sentezlenmesinde, ucuz olması sebebiyle solüsyon-bazlı yaklaşımlar kullanılır. Bu çalışmada, Küprik oksit/Silisyum p-n heteroeklemli nanodiyotların fotovoltaik performansı incelenmiştir. Yüksek yoğunluklu ve dikey olarak düzgün sıralanmış Silisyum nanotel kümeleri, n-tipi (100)-yönelimli kristal Silisyum dilimi üzerine akımsız dağlama tekniği ile sentezlendi. Daha sonra, üç-boyutlu heteroyapılar üretmek için p-tipi Küprik oksit ince filmleri Silisyum nanoteller üzerine kimyasal depolama yöntemi ile kaplandı. Akım-gerilim (I-V) ölçümleri, üretilen heteroeklemli diyotların fotovoltaik özelliklerini incelemek için kullanıldı. AM 1.5 G aydınlatma koşulları altında en yüksek güç dönüştürme verimliliği %0,58 olarak bulundu. Ayrıca, 4001100 nm arasında geniş bir dalgaboyu spektrumunda oldukça yüksek dış kuantum verimi saptandı

Photovoltaic Characteristics of Cupric Oxide/Silicon Heterojunction Nanodiodes

Solution-based approaches are used to prepare nanostructured materials for device applications to reduce material production and device fabrication costs. In this study, photovoltaic performance of Cupric oxide/Silicon p-n heterojunction nanodiodes were investigated. Highly dense and vertically well-aligned Silicon nanowire arrays were successfully synthesized on a n-type (100)-oriented Si wafer through electroless etching technique. p-type Cupric oxide thin films were then coated onto Silicon nanowires via chemical bath deposition method to form three-dimensional heterostructures. Current-voltage (I-V) measurements were utilized to examine photovoltaic properties of the fabricated heterojunction diodes. The maximum power conversion efficiency were found to be 0.58% under simulated solar irradiation of AM 1.5 G. Furthermore, relatively high external quantum efficiency over a broadband spectrum of wavelengths between 400-1100 nm was detected

___

  • Akgul, G., Aksoy Akgul, F., Mulazimoglu, E., Unalan, H. E., Turan, R., 2014, “Fabrication and Characterization of Copper Oxide-Silicon Nanowire Heterojunction Photodiodes”, Journal of Physics D: Applied Physics, Vol. 47, pp. 065106-1–065106-7.
  • Akgul F. A., Akgul G., Yildirim N., Unalan H. E., Turan R., 2014, “Influence of Thermal Annealing on Microstructural, Morphological, Optical Properties and Surface Electronic Structure of Copper Oxide Thin Films”, Materials Chemistry and Physics, Vol. 147, pp. 987-995.
  • Akgul, G., Aksoy Akgul, F., Unalan, H.E., Turan, R., 2016, “Photovoltaic Performance of Gallium-doped ZnO Thin Film/Si Nanowires Heterojunction Diodes”, Philosophical Magazine, Vol. 96, No. 11, pp. 1093-1109.
  • Balamurugan, B., Mehta, B.R., 2001, “Optical and Structural Properties of Nanocrystalline Copper Oxide Thin Films Prepared by Activated Reactive Evaporation”, Thin Solid Films, Vol. 396, pp. 90-96.
  • Bauer, J., Fleischer, F., Breitenstein, O., Schubert, L., Werner, P., Gösele, U., Zacharias, M., 2007, “Electrical Properties of Nominally Undoped Silicon Nanowires Grown by Molecular Beam Epitaxy”, Applied Physics Letters, Vol. 90, pp. 012105-1–012105-3.
  • Colli, A., Fasoli, A., Beecher, P., Servati, P., Pisana, S., Fu, Y., Flewitt, A.J., Milne, W.I., Robertson, J., Ducati, C., De Franceschi, S., Hofmann, S., Ferrari, A.C., 2007, “Thermal and Chemical Vapor Deposition of Si Nanowires: Shape Control, Dispersion, and Electrical Properties”, Journal of Applied Physics, Vol. 102, pp. 034302-1–034302-13.
  • Figueiredo, V., Elangovan, E., Gonçalves, G., Barquinha, P., Pereira, L., Franco, N., Alves, E., Martins, R., Fortunato, E., 2008, “Effect of Post-annealing on the Properties of Copper Oxide Thin Films Obtained from the Oxidation of Evaporated Metallic Copper”, Applied Surface Science, Vol. 254, pp. 3949-3954.
  • Fu, Y.Q., Colli, A., Fasoli, A., Luo, J.K., Flewitt, A. J., Ferrari, A.C., Milne, W. I., 2009, “Deep Reactive Ion Etching As a Tool for Nanostructure Fabrication”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, Vol. 27, pp. 1520-1526.
  • Garnett, E.C., Yang, P., 2008, “Silicon Nanowire Radial p-n Junction Solar Cells”, Journal of the American Chemical Society, Vol. 130, pp. 9224-9225.
  • Hochbaum, A. I., Fan, R., He, R., Yang, P., 2005, “Controlled Growth of Si Nanowire Arrays for Device Integration”, Nano Letters, Vol. 5, pp. 457-460.
  • Jayatissa, A. H., Guo, K., Jayasuriya, A.C., 2009, “Fabrication of Cuprous and Cupric Oxide Thin Films by Heat Treatment”, Applied Surface Science, Vol. 255, pp. 9474-9479.
  • Jia, G., Steglich, M., Sill, I., Falk, F., 2012, “Core–shell Heterojunction Solar Cells on Silicon Nanowire Arrays”, Solar Energy Materials and Solar Cells, Vol. 96, pp. 226-230.
  • Johan, M.R., Mohd-Suan, M.S., Hawari, N.L., Ching, H.A., 2011, “Annealing Effects on the Properties of Copper Oxide Thin Films Prepared by Chemical Deposition”, Int. J. Electrochem. Sci., Vol. 6, pp. 6094-6099.
  • Kaya, M, 2016, p-tipi Bakır Oksit İnce Film/n-tipi Silisyum Nanotel Heteroeklemli Diyotların Üretimi ve Elektriksel Özelliklerinin İncelenmesi, Yüksek Lisans Tezi, Ömer Halisdemir Üniversitesi, Fen Bilimleri Enstitüsü, Niğde.
  • Ma, X. L., Zhu, Y. L., Zhang, Z., 2002, “Growth Orientation of One-dimensional Silicon Nanowires Prepared by Thermal Evaporation”, Philosophical Magazine Letters, Vol. 82, pp. 461-468.
  • Maruyama, T., 1998, “Copper Pxide Thin Films Prepared by Chemical Vapor Deposition From Copper Dipivaloylmethanate”, Solar Energy Materials And Solar Cells, Vol. 56, pp. 85-92.
  • Morales, A. M., 1998, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires”, Science, Vol. 279, pp. 208-211.
  • Mridha, S., Basak, D., 2006, “Investigation of a p-CuO/n-ZnO Thin Film Heterojunction for H2 Gassensor Applications”, Semiconductor Science and Technology, Vol. 21, pp. 928-932.
  • Papadimitropoulos, G., Vourdas, N., Vamvakas, V.E., Davazoglou, D., 2006, “Optical and Structural Properties of Copper Oxide Thin Films Grown by Oxidation of Metal Layers”, Thin Solid Films, Vol. 515, pp. 2428-2432.
  • Park, J.Y., Kwon, T. H., Koh, S. W., Kang, Y. C., 2011, “Annealing Temperature Dependence on the Physicochemical Properties of Copper Oxide Thin Films”, Bulletin of Korean Chemical Society, Vol. 32, pp. 1331-0335.
  • Ramya, V., Neyvasagam, K., Chandramohan, R., Valanarasu, S., Benial, A.M.F., 2015, “Studies on Chemical Bath Deposited CuO Thin Films for Solar Cells Application”, Journal of Materials Science: Materials in Electronics, Vol. 26, pp. 8489-8496.
  • Schroder, D. K., 2006, Semiconductor Material and Device Characterization, 3rd ed., John Wiley & Sons, New York, NY.
  • Serin, N. Serin, T., Horzum, Ş., Çelik, Y., 2005, “Annealing Effects on the Properties of Copper Oxide Thin Films Prepared by Chemical Deposition”, Semiconductor Science and Technology, Vol. 20, pp. 398-401.
  • Sharma, S., Sunkara, M.K., 2004, “Direct Synthesis of Single-crystalline Silicon Nanowires Using Molten Gallium and Silane Plasma”, Nanotechnology, Vol. 15, pp. 130-134.
  • Sivakov, V., Andra, G., Gawlik, A., Berger, A., Plentz, J., Falk, F., Christiansen, S. H., 2009, “Silicon Nanowire-based Solar Cells on Glass: Synthesis, Optical Properties, and Cell Parameters”, Nano Letters, Vol. 9, pp. 1549-1554.
  • Srivastava, S.K., Kumar, D., Singh, P.K., Kar, M., Kumar, V., Husain M., 2010, “Fabrication of Silicon Nanowire Arrays Based Solar Cell with Improved Performance”, Solar Energy Materials and Solar Cells, Vol. 94, pp. 1506-1511.
  • Srivastava, S. K., Kumar, D., Schmitt, S. W., Sood, K. N., Christiansen, S. H., Singh, P. K., 2014, “Large Area Fabrication of Vertical Silicon Nanowire Arrays by Silver-assisted Single-step Chemical Etching and Their Formation Kinetics”, Nanotechnology, Vol. 25, pp. 175601-1–175601-17. Tauc, T. J., 1972, Optical Properties of Solids, North-Holland, Amsterdam.
  • Tian, B., Zheng, X., Kempa, T. J., Fang, Y., Yu, N., Yu, G., Huang, J., Lieber, C. M., 2007, “Coaxial Silicon Nanowires as Solar Cells and Nanoelectronic Power Sources”, Nature, Vol. 449, pp. 885-889.
  • Yacobi, B.G., 2002, Semiconductor Materials: An Introduction to Basic Principles, Kluwer Academic/Plenum Publishers, London.