INVESTIGATION OF SURFACE ROUGHNESS AND MICROHARDNESS IN BALL BURNISHING PROCESS OF AZ31B MAGNESIUM ALLOY

Magnesium alloys which are lightweight and high strength materials have some limitations due to their insufficient corrosion resistance and low surface quality. To overcome these limitations, especially improving surface properties ball burnishing process was applied to magnesium alloy with different parameters like force, number of passes, feed rate and speed. For reducing number of experiments Taguchi method was used and optimum burnishing condition was determined according to S/N ratios. The results of surface roughness and hardness tests show that feed rate and force was found significant parameters for improving surface quality. When lower feed rate and higher force parameters was choosen best surface roughness value was obtained.

AZ31B Magnezyum Alaşımının Bilyalı Parlatma Yöntemi ile Mikrosertlik ve Yüzey Pürüzlülüğünün Araştırılması

Hafif ve yüksek dayanımlı malzemelerden olan magnezyum alaşımları, yetersiz korozyon direnci ve düşük yüzey kalitesi nedeniyle bazı sınırlamalara sahiptir. Bu sınırlamaların üstesinden gelmek, özellikle yüzey özelliklerini iyileştirmek için, ilerleme hızı, devir, kuvvet ve paso sayısı gibi farklı parametrelerle bilyalı parlatma işlemi uygulanmıştır. Deney sayısını azaltmak için Taguchi yöntemi kullanılmış ve S/N oranlarına göre en iyi parlatma koşulları belirlenmiştir. Yüzey pürüzlülüğü ve sertlik testlerinin sonucunda ilerleme hızı ve kuvvetin yüzey kalitesini iyileştirmede önemli parametreler olduğu bulunmuştur. Düşük ilerleme hızı ve yüksek kuvvet parametreleri seçildiğinde en iyi yüzey pürüzlülüğü değeri elde edilmiştir.

___

Aldas, K., Özkul, I., Eskil, M., 2014, “Prediction of Surface Roughness in Longitudinal Turning Process by a Genetic Learning Algorithm”, Materials Testing, Vol. 56, pp. 375-380.

Cui, Z., Shi, H., Wang, W., Xu, B. 2015, “Laser Surface Melting az31bb Magnesium Alloy with Liquid Nitrogen-Assisted Cooling”, Transactions of Nonferrous Metals Society of China, Vol. 25, pp. 1446- 1453.

De Lacalle, L. N., Lamikiz, A., Sanchez, A., Arana, J. L., 2007, “The Effect of Ball Burnishing on Heat- Treated Steel and Inconel 718 Milled Surfaces”, The International Journal of Advanced Manufacturing Technology, Vol. 32, pp. 958-968.

El-Axir, M., 2000, “An Investigation into Roller Burnishing”, International Journal of Machine Tools and Manufacture, Vol. 40, pp. 1603-1617.

El-Axir, M. H., Ibrahim, A., 2005, “Some Surface Characteristics due to Center Rest Ball Burnishing”, Journal of Materials Processing Technology, Vol. 167, pp. 47-53.

El-Axir, M., Othman, O., Abodiena, A., 2008”, Improvements in Out-of-Roundness and Microhardness of Inner Surfaces by Internal Ball Burnishing Process”, Journal of Materials Processing Technology, Vol. 196, pp. 120-128.

El-Taweel, T., El-Axir, M., 2009, “Analysis and Optimization of The Ball Burnishing Process Through the Taguchi Technique”, The International Journal of Advanced Manufacturing Technology, Vol. 41, pp. 301-310.

Fouad., Y, 2011, “Fatigue Behavior of a Rolled AZ31B Magnesium Alloy after Surface Treatment by EP and BB Conditions”, Alexandria Engineering Journal, Vol. 50, pp. 23-27.

Fouad, Y., El Batanouny, M., 2011, “Effect of Surface Treatment on Wear Behavior of Magnesium Alloy AZ31B”, Alexandria Engineering Journal, Vol. 50, pp. 19-22.

Gomez-Gras, G., Travieso-Rodriguez, J. A., Jerez-Mesa, R., 2015, “Experimental Characterization of the Influence of Lateral Pass Width on Results of a Ball Burnishing Operation”, Procedia Engineering, Vol. 132, pp. 686-692.

Hassan, A. M., 1997, “The Effects of Ball-and Roller-Burnishing on the Surface Roughness and Hardness of Some Non-Ferrous Metals”, Journal of Materials Processing Technology, Vol. 72, pp. 385-391.

Hassan, A. M., Al-Bsharat, A. S., 1996, “Improvements in Some Properties of Non-Ferrous Metals by the Application of the Ball-Burnishing Process”, Journal of Materials Processing Technology, Vol. 59, pp. 250-256.

Hassan, A. M., Al-Dhifi, S. Z., 1999, “Improvement in the Wear Resistance of Brass Components by the Ball Burnishing Process”, Journal of Materials Processing Technology, Vol. 96, pp. 73-80.

Hiegemann, L., Weddeling, C., Tekkaya, A. E., 2016, “Analytical Contact Pressure Model for Predicting Roughness of Ball Burnished Surfaces”, Journal of Materials Processing Technology, Vol. 232, pp. 63-77.

Ibrahim, A. A., Rabbo, S. M., El-Axir, M. H., Ebied, A. A., 2009, “Center Rest Balls Burnishing Parameters Adaptation of Steel Components Using Fuzzy Logic”, Journal of Materials Processing Technology, Vol. 209, pp. 2428-2435.

John, M. R. S., Wilson, A. W., Bhardwaj, A. P., Abraham, A., Vinayagam, B. K., 2016, “An Investigation of Ball Burnishing Process on CNC Lathe Using Finite Element Analysis”, Simulation Modelling Practice and Theory, Vol. 62, pp. 88-101.

Klocke, F., Backer, V., Wegner, H., Feldhaus, B., Baron, H. U., Hessert, R., 2009, “Influence of Process and Geometry Parameters on the Surface Layer State After Roller Burnishing of In718”, Production Engineering, Vol. 3, pp. 391-399.

Kulekci, M. K., Akkurt, A., Esme, U., Ozkul, I., 2014, “Multiple Regression Modeling and Prediction of the Surface Roughness in the Wedm Process”, Materiali in Tehnologije, Vol.48, pp. 9-14.

Nemat, M., Lyons, A., 2000, “An Investigation of the Surface Topography of Ball Burnished Mild Steel and Aluminium”, The International Journal of Advanced Manufacturing Technology, Vol. 16, pp. 469- 473.

Pu, Z., Outeiro, J. C., Batista, A. C., Dillon, Jr. O. W., Puleo, D. A., Jawahir, I. S., 2012, “Enhanced Surface Integrity of AZ31BB Mg Alloy by Cryogenic Machining Towards Improved Functional Performance of Machined Components”, International Journal of Machine Tools and Manufacture, Vol. 56, pp. 17-27.

Revankar, G. D., Shetty, R., Shrikantha, S., Vinayak, R., Gaitonde, N., 2014, “Analysis of Surface Roughness and Hardness in Ball Burnishing of Titanium Alloy”, Measurement, Vol. 58, pp. 256- 268.

Rodriguez, A., Lopez de Lacalle, L. N., Celaya, A., Lamikiz, A., Albizuri, J., 2012, “Surface Improvement of Shafts by the Deep Ball-Burnishing Technique”, Surface and Coatings Technology, Vol. 206, pp. 2817-2824.

Sagbas, A., 2011, “Analysis and Optimization of Surface Roughness in The Ball Burnishing Process Using Response Surface Methodology and Desirabilty Function”, Advances in Engineering Software, Vol. 42, pp. 992-998.

Shiou, F., Cheng, C., 2008, “Ultra-precision Surface Finish of NAK80 Mould Tool Steel Using Sequential Ball Burnishing and Ball Polishing Processes” Journal of Materials Processing Technology, Vol. 201, pp. 554-559.

Shiou, F. J., Hsu, C. C., 2008, “Surface Finishing of Hardened and Tempered Stainless Tool Steel using Sequential Ball Grinding, Ball Burnishing and ball Polishing Processes on a Machining Centre”, Journal of Materials Processing Technology, Vol. 205, pp. 249-258.

Tadic, B., Todorovic, P. M., Luzanin, O., Miljanic, D., Jeremevic, B. M., Bogdanovic, B., Vukelic, D., 2013, “Using Specially Designed High-Stiffness Burnishing Tool to Achieve High-Quality Surface Finish”, The International Journal of Advanced Manufacturing Technology, Vol. 67, pp. 601-611.