BEARING CAPACITY and BULGING BEHAVIOR of GEOGRID ENCASED STONE COLUMNS

Son yıllarda yumuşak zeminlerin iyileştirilmesi için kullanılan taş kolonun kullanımını artırmak için geogrid kaplama kullanılmaktadır. Bu çalışmada, geogrid kaplamanın, yumuşak zemin yatağı içerisindeki taş kolonun performansına olan etkisi araştırılmıştır. Geogrid kaplı ve geogridsiz taş kolonun davranışını belirlemek için deneysel ve numerik çalışmalar gerçekleştirilmiştir. Deneysel çalışma için küçük ölçekli laboratuvar testleri gerçekleştirilmiştir. Ayrıca, geoteknik mühendisliğinde iki boyutlu deformasyon ve stabilite analizleri için tasarlanmış sonlu elemanlar programı olan PLAXIS numerik çalışmalar için kullanılmıştır. Numerik çalışmalar gerçekleştirilmeden önce deneysel çalışmaların ve numerik analizlerin uyumluluğu kontrol edilmiştir. Uyum elde edildikten sonra taş kolonda geogridin rijitliğinin, geogrid kaplama boyunun ve yanal genişleme gibi farklı parametrelerin etkisi numerik çalışmalar ile araştırılmıştır. Ek olarak grup kolonlar da incelenmiştir. Bu çalışmanın sonuncu olarak, geogridin kaplama boyu ve rijitliği geogrid kaplı taş kolonun yük taşıma kapasitesini ve genişleme davranışını önemli ölçüde etkilemektedir.

Geogrid Kaplı Taş Kolonların Taşıma Kapasitesi ve Genişleme Davranışı

In recent years, geogrid encasement has been used to extend the utilization of stone columns to improve soft soil's properties. This paper investigates the influence of geogrid encasement on the performance of stone columns in soft clay deposits. Experimental and numerical studies were conducted to figure out behavior of stone columns with and without geogrid reinforcement. The small scale laboratory tests were carried out. In addition, PLAXIS which is a finite element package intended for the two dimensional analysis of deformation and stability in geotechnical engineering was used to numerical studies. Before conducting the numerical studies, the validation between results of the experimental studies and numerical analysis was performed. After validation, the numerical studies were performed with different parameters such as the rigidity effect of geogrid, depth of geogrid reinforcement and lateral bulging of the stone columns. In addition, group of stone column was investigated. As a result of this studies, load carrying capacity and bulging behavior of the geogrid encased stone column was significantly influenced from the depth and the stiffness of the geogrid.

___

  • Ambily, A. P., Gandhi, S. R., 2007, "Behavior of stone columns based on experimental and FEM analysis", Journal of geotechnical and geoenvironmental engineering, 133(4), 405-415.
  • Andreou, P., Frikha, W., Frank, R., Canou, J., Papadopoulos, V., Dupla, J. C., 2008, "Experimental study on sand and gravel columns in clay", Proceedings of the ICE-Ground Improvement, 161(4), 189- 198.
  • Ayadat, T., Hanna, A. M., 2005, "Encapsulated stone columns as a soil improvement technique for collapsible soil", Proceedings of the ICE-Ground Improvement, 9(4), 137-147.
  • Balaam, N. P., Poulos, H. G., Brown, P. T., 1978, "Settlement analysis of soft clays reinforced with granular piles", Proc., 5th Asian Conf. on Soil Engineering, Bangkok, Thailand, 81-92.
  • Barksdale, R.D., Bachus, R.C., 1983, "Design and construction of stone columns: Final report" SCEGIT- 83-104. Federal Highway Administration, Washington D.C.
  • Bauer G.E., Nabil Al-Joulani, 1996, "Laboratory and analytical ınvestigation of sleeve reinforced stone columns", Geosynthetics: application, design and construction, 463-466.
  • Black, J. A., Sivakumar, V., Madhav, M. R., Hamill, G. A., 2007, "Reinforced stone columns in weak deposits: laboratory model study", Journal of Geotechnical and Geoenvironmental Engineering, 133(9), 1154-1161.
  • Brinkgreve, R. B. J., Broere, W., Waterman, D., 2004, "Plaxis finite element code for soil and rock analysis", 2D -Version 8.6.
  • Demir, A., Ok, B., 2015, "Uplift response of multi-plate helical anchors in cohesive soil", Geomechanics and Engineering, 8(4), 615-630.
  • Engelhardt, K., Golding, H. C., 1975, "Field testing to evaluate stone column performance in a seismic area", Geotechnique, 25(1), 61-69.
  • Isaac, D. S., Girish, M. S., 2009, "Suitability of different materials for stone column construction", EJGE, 14, 2-12. ISO 690
  • Katti, R.K., Katti, A.R, Naik, S., 1993, "Monograph to analysis of stone columns with and without geosynthetic encasing", CBRI publication, New Delhi.
  • Kempfert, H. G., 2003, "Ground improvement methods with special emphasis on column-type techniques", In Proceedings, international workshop on geotechnics of soft soils--theory and practice (pp. 101-112).
  • Keykhosropur, L., Soroush, A., Imam, R., 2012, "3D numerical analyses of geosynthetic encased stone columns", Geotextiles and Geomembranes, 35, 61-68.
  • Laman, M., Yildiz, A., 2007, "Numerical studies of ring foundations on geogrid-reinforced sand", Geosynthetics International 14 (2), 1-13.
  • Malarvizhi, S. N., Ilamparuthi, K., 2008, "Numerical analysis of encapsulated stone columns", In 12th International Conference of International Association for Computer Methods and Advances in Geomechanics, Goa, India (pp. 3719-3726).
  • Priebe, H. J., 1995, "The design of vibro replacement", Ground engineering, 28(10), 31.
  • Sarıcı T., Demir A., Altay G., Laman M., Ok B., Bağrıaçık B., 2013, "Yumuşak Kil İçindeki Taş Kolonun Küçük Ölçekli Model Deneyler İle Değerlendirilmesi", 5. Geoteknik Sempozyumu 5-7 Aralık 2013, Çukurova Üniversitesi, Adana
  • Wehr, J., 2006, "The undrained cohesion of the soil as criterion for the column installation with a depth vibrator", In: Proceedings of the International Symposium on Vibratory Pile Driving and Deep Soil Vibratory Compaction. TRANSVIB, Paris, pp. 157e162
  • Watts, K. S., Johnston, D., Wood, L. A., Saadi, A., 2000, "An instrumented trail of vibro ground treatment supporting strip foundations in a variable fill", Geotechnique, 50 6, 699-708.