Organik İnsektisit Fipronil’in Genotoksik Etkilerinin Civciv Mikronukleus Test Sisteminde Belirlenmesi

Organik bir insektisit olan Fipronil, pestisitlerin fenil pirazoller veya fiproller olarak bilinen daha yeni ve küçük bir grubuna dahildir. Bu çalışmanın amacı ticari Fipronil’in olası akut ve kronik genotoksik etkilerinin civciv perifer kan hücrelerinde mikronukleus test sisteminde belirlenmesiydi. Bu amaçla farklı dozlardaki Fipronil (6.25, 25, 50 ve 100 mg/kg) civcivlere intraperitonal yolla verilmiştir. Negatif kontrol amacıyla çözücü (distile su), pozitif kontrol grubu amacıyla da siklofosfamid kullanılmıştır. Uygulamalardan sonra perifer kan örnekleri alınarak frotiler hazırlanmış ve modifiye May Grünwald–Giemsa yöntemiyle boyanmıştır. Bu preparatlarda alyuvarlardaki mikronukleus ve anormal nukleus oranları ışık mikroskobuyla tespit edilmiştir. Negatif kontrol grubuna kıyasla, Fipronil uygulanan grupların mikronukleus ve anormal nukleus oranlarında istatistiksel olarak önemli düzeyde bir artış gözlenmemiştir (p>0.05). Bu sonuçlar ışığında Fipronil’in ticari formülasyonunun test edilen dozlarda civcivler için genotoksik olmadığı düşünülebilir.

Determination of Genotoxic Effects of Organic Insecticide Fipronil in Chick in vivo Micronucleus Assay

Fipronil, an organic insecticide, is a member of relatively new and small class of pesticides, the phenyl pyrazoles or fiproles group of chemicals. The aim of this study was to determine the possible acute and chronic genotoxic effects of commercial formulations of Fipronil in micronucleus test in peripheral blood erythrocytes of the chick. For this purpose, different doses of Fipronil (6.25, 25, 50 and 100 mg/kg) were given to chicks intraperitoneally. Distilled water and cyclophosphamide were also used as negative and positive controls, respectively. After treatments, blood smears were prepared and stained with modified May Grünwald–Giemsa. In this smears, frequencies of micronucleus and nuclear abnormality were examined in erythrocytes under light microscope. A statistically significant increase in the frequency of micronucleus and nuclear abnormality of groups treated with Fipronil could not be observed compared to negative control (p>0.05). These results indicate that commercial formulations of Fipronil at doses tested may be considered as a non–genotoxic compound for chicks.

___

  • Ishaaya, I. Insecticides with novel modes of action: An overview. In: Insecticides with Novel Modes of Action Mechanisms and Application. Degheele, D. (ed.), Springer–Verlag Berlin, pp. 1–24 (1998)
  • Ishaaya, I. Biochemical processes related to insecticide action: An overview. In: Biochemical Sites of Insecticide Action and Resistance. Ishaaya, I. (ed.) Springer–Verlag Berlin, pp. 1–16 (2001)
  • Tomlin, C.D.S. The pesticide manual 2000. British Crop Protection Council, 12th edition (2000)
  • Tingle, C.C.D., Rother, J.A., Dewhurst, C.F., Lauer, S. and King, W.J. Fipronil: Environmental fate, ecotoxicology, and human health concerns. Rev. Environ. Contam. Toxicol. 176: 1–66 (2003)
  • Aydınoğlu, H., Dursun, H.Y. ve Bayraktar, L. Bitki Koruma Ürünleri. T.C. Tarım ve Köy İşleri Bakanlığı Koruma ve Kontrol Genel Müdürlüğü Yayınları, Ankara (2002)
  • Hovda, L.R. and Hooser, S.B. Toxicology of newer pesticides for use in dogs and cats. Vet. Clin. Small Anim. 32: 455–467 (2002)
  • USEPA. Fipronil. Pesticide fact sheet. EPA 737–F–96–005. U.S. Environmental Protection Agency, Washington, USA. http://www.epa.gov/ fedrgstr/EPA–PEST/199ay–12/pr– 736DIR/Facts/Factsheet.txt.html (1996)
  • ACP. Evaluation of fipronil use as a public hygiene insecticide. Advisory Committee on Pesticides. Food and Environment Protection Act 1985, part III. Control of Pesticides Regulations 1986. No. 187. Issue No. 52. Pesticides Safety Directorate, MAFF, York, UK (1999)
  • Hamon, N.M., Gamboa, H. and Garcia, J.E.M. Fipronil: A major advance for the control of boll weevil in Columbia. In: Herzog, G.A. Hardee, D.A. (chairs), Ottens, R.J., Ireland, C.S., Nelms, J.V. (eds.). Proceedings, Beltwide Cotton Conferences USA, Vol. 2, Jan. 9–12 1996, Nashville, T.N. Cotton Insect Research and Control Conference. N.C.C., Memphis, TN, pp. 990–994 (1996)
  • 0. Özparlak, H. Yumurtaya Verilen Organik İnsektisit Fipronil’in Tavukların Embriyonik ve Kuluçka Sonu Erken Dönem Gelişimi Üzerindeki Zararlı Etkilerinin Belirlenmesi. S.Ü. Fen Bilimleri Enstitüsü, Doktora Tezi, Konya, 135 s. (2006)
  • 1. Wolf, T. and Luepke, N.P. Formation of micronuclei in incubated hen’s eggs as a measure of genotoxicity. Mutat. Res.–Gen. Tox. En. 394: 163–175 (1997)
  • 2. Çavaş, T. and Ergene–Gözükara, S. Evaluation of the genotoxic potential of lambda–cyhalothrin using nuclear and nucleolar biomarkers on fish cells. Mutat. Res.–Gen. Tox. En. 534: 93–99 (2003)
  • 3. Müller, W.–U. and Streffer, C. Micronucleus assays. In: Advances in Mutagenesis Research. Obe, G. (ed.), Vol 5, Springer–Verlag, pp. 1–134 (1994)
  • 4. Lucas, A.M. and Jamroz, C. Atlas of Avian Hematology. Agriculture Monograph 25, United States Department of Agriculture, U.S. Government Printing Office, Washington, DC (1961)
  • 5. Savage, J.R.K. Micronuclei: Pitfalls and problems. Atlas of Genetics and Cytogenetics in Oncology and Haematology. http://www.infobiogen.fr /services/chromcancer/Deep/MicronucleiID20016.html (2000)
  • 6. USEPA. In vivo mammalian cytogenetics test: Erythrocyte micronucleus assay. Health effects test guidelines EPA OPPTS 870. 5395. U.S. Environmental Protection Agency, Washington, USA. http://www.epa.gov/opptsfrs/publications/OPPTS_Harmonized/870_Health_Effects_Test_Guidelines/Se ries/870–5395.pdf (1996)
  • 7. Çavaş, T. and Ergene–Gözükara, S. Micronuclei, nuclear lesions and interphase silver–stained nucleolar organizer regions (AgNORs) as cyto–genotoxicity indicators in Oreochromis niloticus exposed to textile mill effluent. Mutat. Res.–Gen. Tox. En. 538: 81–91 (2003)
  • 8. Wolf, T., Niehaus–Rolf, C. and Luepke, N.–P. Some new methodological aspects of the hen’s egg test for micronucleus induction (HET–MN). Mutat. Res.–Gen. Tox. En. 514: 59–76 (2002)
  • 9. Jena, G.B. and Bhunya, S.P. Use of chick, Gallus domesticus, as an in vivo model for the study of chromosome aberration: A study with mitomycin C and probable location of a 'hot spot'. Mutat. Res. 334 (2): 167–174 (1995)
  • 0. Bhunya, S.P. and Jena, G.B. Clastogenic effects of copper sulphate in chick in vivo test system. Mutat. Res. 367 (2): 57–63 (1996)
  • 1. Bhunya, S.P. and Jena, G.B. Genotoxic potential of the organochlorine insecticide lindane (γ– BHC): An in vivo study in chicks. Mutat. Res. 272: 175–181 (1992)
  • 2. Jena, G.B. and Bhunya, S.P. Thirty day genotoxicity study of an organophosphate insecticide, monocrotophos, in a chick in vivo test system. In vivo 6 (5): 527–530 (1992)
  • 3. Bhunya, S.P. and Jena, G.B. Studies on the genotoxicity of monocrotophos, an organophosphate insecticide, in the chick in vivo test system. Mutat. Res. 292: 231–239 (1993)
  • 4. Jena, G.B. and Bhunya, S.P. Mutagenicity of an organophosphate insecticide acephate—an in vivo study in chicks. Mutagenesis 9 (4): 319–324 (1994)
  • 5. Giri, S., Sharma, G.D., Giri, A. and Prasad, S.B. Genotoxic effects of malathion in chick in vivo micronucleus assay. Cytologia 67: 53–59 (2002)