Nanopartiküllerin tarımsal bilimlerdeki önemi ve kullanım alanları

Nanoteknoloji, kullanım alanı her geçen gün artan bir fenomen haline gelmiştir. Nanopartikülerin kullanımı gittikçe yaygınlaşmakta ve önem kazanmaktadır. Nanopartiküller, özellikle tarımsal bilimlerde, yüksek kullanım potansiyeline sahiptir. Bitkilerin böcek ilaçlarına, herbisitlere ve patojenlerine karşı korunmasında önemli rol oynarlar. Ayrıca, bitki sinyalizasyonuda önemli görevler üstlenebilir veya nanosensör olarak kullanılabilirler. geleceğin teknolojisi olarak değerlendirilen, yeşil nanobiyoteknoloji çevre dostu ve sürdürülebilir olması açısından çok sık tercih edilmektedir. Biz bu çalışmada nanopartiküllerin tarımsal bilimlerdeki kullanım alanlarına odaklanıyor ve nanopartiküllerin önemini vurgulamayı amaçlıyoruz.

Importance of nanoparticles in agricultural science and their use areas

Nanotechnology has become a phenomenon that is increasing every day. The use of nanoparticles is becoming more and more important. Nanoparticles, especially in agricultural sciences, have high potential for use. They play an important role in protecting plants against pesticides, herbicites and pathogens. They can also perform important tasks in plant signalling or be used as nanosensors. Moreover, green nanobiotechnology, which is considered the technology of the future, is often preferred in terms of being environmentally friendly and sustainable In this study, the importance and the use of nanoparticles in agricultural sciences are explained.

___

  • Afsharinejad, A., Davy, A., Jennings, B. ve Brennan, C., 2015, Performance analysis of plant monitoring nanosensor networks at THz frequencies, IEEE Internet of Things Journal, 3 (1), 59-69.
  • Ahmed, B., Rizvi, A., Ali, K., Lee, J., Zaidi, A., Khan, M. S. ve Musarrat, J., 2021, Nanoparticles in the soil–plant system: a review, Environmental Chemistry Letters, 19, 1545-1609.
  • Almutairi, Z. M. ve Alharbi, A., 2015, Effect of silver nanoparticles on seed germination of crop plants, International Journal of Nuclear and Quantum Engineering, 9 (6), 689-693.
  • Ambrosone, A., Marchesano, V., Carregal-Romero, S., Intartaglia, D., Parak, W. J. ve Tortiglione, C., 2016, Control of Wnt/β-catenin signaling pathway in vivo via light responsive capsules, ACS nano, 10 (4), 4828-4834.
  • Ananda, S., Shobha, G., Shashidhara, K. ve Mahadimane, V., 2019, Nano-cuprous oxide enhances seed germination and seedling growth in Lycopersicum esculentum plants, Journal of Drug Delivery and Therapeutics, 9 (2), 296-302.
  • Asiyanbola, B. ve Soboyejo, W., 2008, For the surgeon: an introduction to nanotechnology, Journal of surgical education, 65 (2), 155-161.
  • Barik, T., Sahu, B. ve Swain, V., 2008, Nanosilica—from medicine to pest control, Parasitology research, 103, 253-258. Chaudhry, N., Dwivedi, S., Chaudhry, V., Singh, A., Saquib, Q., Azam, A. ve Musarrat, J., 2018, Bio-inspired nanomaterials in agriculture and food: Current status, foreseen applications and challenges, Microbial pathogenesis, 123, 196-200.
  • Chauhan, R. P., Gupta, C. ve Prakash, D., 2012, Methodological advancements in green nanotechnology and their applications in biological synthesis of herbal nanoparticles, International Journal of Bioassays (IJB).
  • Chichiriccò, G. ve Poma, A., 2015, Penetration and toxicity of nanomaterials in higher plants, Nanomaterials, 5 (2), 851-873.
  • Daniel, M.-C. ve Astruc, D., 2004, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chemical reviews, 104 (1), 293-346.
  • Das, K. ve Roychoudhury, A., 2014, Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants, Frontiers in environmental science, 2, 53.
  • Dimkpa, C. O., McLean, J. E., Martineau, N., Britt, D. W., Haverkamp, R. ve Anderson, A. J., 2013, Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix, Environmental science & technology, 47 (2), 1082-1090.
  • Duhan, J. S., Kumar, R., Kumar, N., Kaur, P., Nehra, K. ve Duhan, S., 2017, Nanotechnology: The new perspective in precision agriculture, Biotechnology Reports, 15, 11-23.
  • Ege, E., Kurtay, G., Karaca, B., Büyük, İ., Gökdemir, F. Ş. ve Sumer, A., 2020, Green synthesis of silver nanoparticles from Phaseolus vulgaris L. extracts and investigation of their antifungal activities, Hacettepe Journal of Biology and Chemistry, 49 (1), 11-23.
  • Etxeberria, E., Gonzalez, P., Bhattacharya, P., Sharma, P. ve Ke, P. C., 2016, Determining the size exclusion for nanoparticles in citrus leaves, HortScience, 51 (6), 732-737.
  • Faisal, M., Saquib, Q., Alatar, A. A., Al-Khedhairy, A. A., Hegazy, A. K. ve Musarrat, J., 2013, Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death, Journal of hazardous materials, 250, 318-332.
  • Faraday, M., 1857, X. The Bakerian Lecture.—Experimental relations of gold (and other metals) to light, Philosophical transactions of the Royal Society of London (147), 145-181.
  • Feng, Y., Cui, X., He, S., Dong, G., Chen, M., Wang, J. ve Lin, X., 2013, The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth, Environmental science & technology, 47 (16), 9496-9504.
  • Feynman, R. P., 1960, An invitation to enter a new field of physics, Int. J. Eng. Sci, 23 (8).
  • Ghosh, M., Ghosh, I., Godderis, L., Hoet, P. ve Mukherjee, A., 2019, Genotoxicity of engineered nanoparticles in higher plants, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 842, 132-145.
  • Goldwasser, Y., Eizenberg, H., Golan, S. ve Kleifeld, Y., 2003, Control of Orobanche crenata and Orobanche aegyptiaca in parsley, Crop Protection, 22 (2), 295-305.
  • Guo, J. ve Chi, J., 2014, Effect of Cd-tolerant plant growth-promoting rhizobium on plant growth and Cd uptake by Lolium multiflorum Lam. and Glycine max (L.) Merr. in Cd-contaminated soil, Plant and soil, 375, 205-214.
  • Harris, D. K. ve Bawendi, M. G., 2012, Improved precursor chemistry for the synthesis of III–V quantum dots, Journal of the American Chemical Society, 134 (50), 20211-20213.
  • Heiligtag, F. J. ve Niederberger, M., 2013, The fascinating world of nanoparticle research, Materials today, 16 (7-8), 262-271.
  • Horst, W. J., Wang, Y. ve Eticha, D., 2010, The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review, Annals of botany, 106 (1), 185-197.
  • Humbal, A. ve Pathak, B., 2023, Application of Nanotechnology in Plant Growth and Diseases Management: Tool for Sustainable Agriculture, In: Agricultural and Environmental Nanotechnology: Novel Technologies and their Ecological Impact, Eds: Springer, p. 145-168.
  • Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A. ve Danquah, M. K., 2018, Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations, Beilstein journal of nanotechnology, 9 (1), 1050-1074.
  • Kumar, V. ve Yadav, S. K., 2009, Plant‐mediated synthesis of silver and gold nanoparticles and their applications, Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 84 (2), 151-157.
  • Larue, C., Castillo-Michel, H., Sobanska, S., Cécillon, L., Bureau, S., Barthès, V., Ouerdane, L., Carrière, M. ve Sarret, G., 2014, Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation, Journal of hazardous materials, 264, 98-106.
  • Li, X., Xu, H., Chen, Z.-S. ve Chen, G., 2011, Biosynthesis of nanoparticles by microorganisms and their applications, Journal of nanomaterials, 2011, 1-16.
  • Li, Z. Z., Chen, J. F., Liu, F., Liu, A. Q., Wang, Q., Sun, H. Y. ve Wen, L. X., 2007, Study of UV‐shielding properties of novel porous hollow silica nanoparticle carriers for avermectin, Pest Management Science: formerly Pesticide Science, 63 (3), 241-246.
  • Liu, R. ve Lal, R., 2014, Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max), Scientific reports, 4 (1), 5686.
  • Luechinger, N. A., Grass, R. N., Athanassiou, E. K. ve Stark, W. J., 2010, Bottom-up fabrication of metal/metal nanocomposites from nanoparticles of immiscible metals, Chemistry of Materials, 22 (1), 155-160.
  • Lv, J., Christie, P. ve Zhang, S., 2019, Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges, Environmental Science: Nano, 6 (1), 41-59.
  • Mahna, N., Vahed, S. Z. ve Khani, S., 2013, Plant in vitro culture goes nano: nanosilver-mediated decontamination of ex vitro explants, J Nanomed Nanotechol, 4 (161), 1.
  • Mehrian, S. K. ve De Lima, R., 2016, Nanoparticles cyto and genotoxicity in plants: Mechanisms and abnormalities, Environmental Nanotechnology, Monitoring & Management, 6, 184-193.
  • Mishra, S. ve Singh, H., 2015, Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture, Applied microbiology and biotechnology, 99, 1097-1107.
  • Mohanpuria, P., Rana, N. K. ve Yadav, S. K., 2008, Biosynthesis of nanoparticles: technological concepts and future applications, Journal of nanoparticle research, 10, 507-517.
  • Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y. ve Kumar, D. S., 2010, Nanoparticulate material delivery to plants, Plant science, 179 (3), 154-163.
  • Narayanan, K. B. ve Sakthivel, N., 2011, Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents, Advances in colloid and interface science, 169 (2), 59-79.
  • Nargund, V., Vinay, J., Basavesha, K., Chikkanna, S., Jahagirdar, S. ve Patil, R., 2021, Green Nanotechnology and Its Application in Plant Disease Management, Emerging Trends in Plant Pathology, 591-609.
  • Ozyigit, I. I., Filiz, E., Vatansever, R., Kurtoglu, K. Y., Koc, I., Öztürk, M. X. ve Anjum, N. A., 2016, Identification and comparative analysis of H2O2-scavenging enzymes (ascorbate peroxidase and glutathione peroxidase) in selected plants employing bioinformatics approaches, Frontiers in Plant Science, 7, 301.
  • Pagano, L., Servin, A. D., De La Torre-Roche, R., Mukherjee, A., Majumdar, S., Hawthorne, J., Marmiroli, M., Maestri, E., Marra, R. E. ve Isch, S. M., 2016, Molecular response of crop plants to engineered nanomaterials, Environmental science & technology, 50 (13), 7198-7207.
  • Pakrashi, S., Jain, N., Dalai, S., Jayakumar, J., Chandrasekaran, P. T., Raichur, A. M., Chandrasekaran, N. ve Mukherjee, A., 2014, In vivo genotoxicity assessment of titanium dioxide nanoparticles by Allium cepa root tip assay at high exposure concentrations, PloS one, 9 (2), e87789.
  • Parashar, V., Parashar, R., Sharma, B. ve Pandey, A. C., 2009, Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization, Digest Journal of Nanomaterials & Biostructures (DJNB), 4 (1).
  • Rai, V., Acharya, S. ve Dey, N., 2012, Implications of nanobiosensors in agriculture. J Biomater Nanobiotechnol 3: 315–324.
  • Roduner, E., 2006, Size matters: why nanomaterials are different, Chemical society reviews, 35 (7), 583-592.
  • Ruotolo, R., Maestri, E., Pagano, L., Marmiroli, M., White, J. C. ve Marmiroli, N., 2018, Plant response to metal-containing engineered nanomaterials: an omics-based perspective, Environmental science & technology, 52 (5), 2451-2467.
  • Sanzari, I., Leone, A. ve Ambrosone, A., 2019, Nanotechnology in plant science: to make a long story short, Frontiers in Bioengineering and Biotechnology, 7, 120.
  • Sardoiwala, M. N., Kaundal, B. ve Choudhury, S. R., 2018, Toxic impact of nanomaterials on microbes, plants and animals, Environmental Chemistry Letters, 16, 147-160.
  • Scheringer, M., 2008, Environmental risks of nanomaterials, Nature Nanotechnology, 3 (6), 322-323.
  • Schwab, F., Zhai, G., Kern, M., Turner, A., Schnoor, J. L. ve Wiesner, M. R., 2016, Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants–Critical review, Nanotoxicology, 10 (3), 257-278.
  • Seil, J. T. ve Webster, T. J., 2012, Antimicrobial applications of nanotechnology: methods and literature, International journal of nanomedicine, 2767-2781.
  • Singh, M., Manikandan, S. ve Kumaraguru, A., 2011, Nanoparticles: a new technology with wide applications, Research Journal of Nanoscience and Nanotechnology, 1 (1), 1-11.
  • Taylor, E. ve Webster, T. J., 2011, Reducing infections through nanotechnology and nanoparticles, International journal of nanomedicine, 1463-1473.
  • Tiwari, D. K., Behari, J. ve Sen, P., 2008, Time and dose-dependent antimicrobial potential of Ag nanoparticles synthesized by top-down approach, Current Science, 647-655.
  • Umeyama, T., Matano, D., Baek, J., Gupta, S., Ito, S., Subramanian, V. ve Imahori, H., 2015, Boosting of the performance of perovskite solar cells through systematic introduction of reduced graphene oxide in TiO2 layers, Chemistry Letters, 44 (10), 1410-1412.
  • Valizadeh, A., Mikaeili, H., Samiei, M., Farkhani, S. M., Zarghami, N., Kouhi, M., Akbarzadeh, A. ve Davaran, S., 2012, Quantum dots: synthesis, bioapplications, and toxicity, Nanoscale research letters, 7, 1-14.
  • Wang, P., Lombi, E., Zhao, F.-J. ve Kopittke, P. M., 2016, Nanotechnology: a new opportunity in plant sciences, Trends in plant science, 21 (8), 699-712.
  • Whiteside, M. D., Treseder, K. K. ve Atsatt, P. R., 2009, The brighter side of soils: quantum dots track organic nitrogen through fungi and plants, Ecology, 90 (1), 100-108.
  • Yang, F., Liu, C., Gao, F., Su, M., Wu, X., Zheng, L., Hong, F. ve Yang, P., 2007, The improvement of spinach growth by nano-anatase TiO 2 treatment is related to nitrogen photoreduction, Biological trace element research, 119, 77-88.
  • Yang, J. L., Li, Y. Y., Zhang, Y. J., Zhang, S. S., Wu, Y. R., Wu, P. ve Zheng, S. J., 2008, Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex, Plant Physiology, 146 (2), 602.
  • Zelalem, G., Azamal, H., Masresha, F. ve Gietahun, Y., 2015, Growth, water status, physiological, biochemical and yield response of Stay Green sorghum (Sorghum bicolor (L.) Moench) varieties-a field trial under drought-prone area in Amhara Regional State, Ethiopia, Journal of Agronomy, 14 (4), 188-202.