Laktik Asit Tayini için Magnetit Nanopartiküller ve Prusya Mavisi ile Modifiye Edilmiş Amperometrik Biyosensör

Laktatoksidaz enzimi (LOx), Fe3O4 nanopartiküller ve Prusya mavisi (PB) ile modifiye edilmiş karbon pasta elektrot laktik asit tayini için amperometrik biyosensör olarak araştırıldı. LOx karbon pasta matrikse glutaraldehit (GA) ve sığır serum albümin (BSA) kullanılarak çapraz bağlama immobilize edildi. Yalın ve modifiye edilmiş karbon pasta elektrotların elektron transfer özellikleri elektrokimyasal empedans spektroskopisi (EIS) ve dönüşümlü voltametri (DV) kullanılarak incelendi. Enzim elektrodun analitik performansını etkileyen parametreler detaylı olarak incelendi ve optimize edildi. Laktik aside optimum cevap 0.05 M pH 5.5 fosfat tamponu içinde Ag/AgCl elektroda karşı +0.10 V’da elde edildi. Biyosensör laktik aside 7.5×10-6 −1.3×10-4 M aralığında, 5.9×10-7 M gözlenebilme sınırı ve 0.998 korelasyon katsayısı ile doğrusal cevap gösterdi. Bozucu türlerin etkisi, biyosensörün çalışma ve depolama kararlılıkları da değerlendirildi. Biyosensör +4°C de saklandığında 1 hafta sonra başlangıç aktivitesinin %5.4’ünü kaybetti.

Magnetite Nanoparticles and Prussian Blue Modified Amperometric Biosensor for Lactic Acid Determination

Carbon paste electrode modified with lactate oxidase (LOx) enzyme, Fe3O4 nanoparticles and Prussian blue (PB) was investigated as amperometric biosensor for lactic acid. LOx was immobilized by cross-linking with glutaraldehyde (GA) and bovine serum albumin (BSA) into carbon paste matrix. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to investigate the electron transfer properties of bare and modified carbon paste electrodes. The parameters affecting the analytical performance of the enzyme electrode have been investigated in detail and optimized. The optimum response to lactic acid was obtained in 0.05 M phosphate buffer at pH 5.5 when polarized at +0.10 V vs. Ag/AgCl. The biosensor provides a linear response for lactic acid in the concentration range of 7.5×10-6-1.3×10-4 M with a detection limit of 5.9×10-7 M and correlation coefficient of 0.998. The effects of interferents, the operational and storage stabilities of the biosensor were also evaluated. The biosensor showed 5.4% loss in its initial activity after one week when stored at +4°C.

___

  • Banerjee S, Sarkar P, Turner APF (2013). Amperometric biosensor based on Prussian Blue nanoparticle-modified screen-printed electrode for estimation of glucose-6-phosphate, Analytical Biochemistry 439, 194–200.
  • Bassi AS, Tang D, Bergougnou MA (1999). Mediated, amperometric biosensor for glucose-6- phosphate monitoring based on entrapped glucose-6-phosphate dehydrogenase, Mg2+ ions, tetracyanoquinodimethane, and nicotinamide adenine dinucleotide phosphate in carbon paste, Analytical Biochemistry 268, 223–228.
  • Casero E, Alonso C, Petit-Domínguez MD, Vázquez L, Parra-Alfambra AM, Merino P, Álvarez-García S, de Andrés A, Suárez E, Pariente F, Lorenzo E (2014). Lactate biosensor based on a bionanocomposite composed of titanium oxide nanoparticles, photocatalytically reduced graphene, and lactate oxidase, Microchimica Acta 181, 79–87.
  • Çelik AC, Öztürk F, Erden PE, Kaçar C, Kılıç E (2015). Amperometric lactate biosensor based on carbon paste electrode modified with benzo[c]cinnoline and multiwalled carbon nanotubes, Electroanalysis 27, 2820–2828.
  • Cinti S, Arduini F, Mosconea D, Palleschi G, Gonzalez-Macia L, Killard AJ (2015). Cholesterol biosensor based on inkjet-printed Prussian blue nanoparticle-modified screen-printed electrodes, Sensors and Actuators B: Chemical 221, 187–190.
  • Erden PE, Pekyardimci Ş, Kiliç E (2011). Amperometric carbon paste enzyme electrodes for uric acid determination with different mediators, Collection of Czechoslovak Chemical Communications 76(9), 1055–1073.
  • Erden PE, Zeybek B, Pekyardimci Ş, Kiliç E (2013). Amperometric carbon paste enzyme electrodes with Fe3O4 nanoparticles and 1,4-Benzoquinone for glucose determination, Artificial Cells, Nanomedicine, and Biotechnology 41(3), 165–171.
  • Escobal A, Iriondo C, Laborra C, Elejalde E, Gonzalez I (1998). Determination of acids and volatile compounds in red Txakoli wine by high-performance liquid chromatography and gas chromatography, Journal of Chromatography A 823, 349–354.
  • Garjonyte R, Yigzaw Y, Meskys R, Malinauskas A, Gorton L (2001). Prussian Blue- and lactate oxidase-based amperometric biosensor for lactic acid, Sensors and Actuators B: Chemical 79, 33–38.
  • Ghamouss F, Ledru S, Ruille N, Lantier F, Boujtita M (2006). Bulk-modified modified screen- printing carbon electrodes with both lactate oxidase (LOD) and horseradish peroxide (HRP) for the determination of l-lactate in flow injection analysis mode, Analytica Chimica Acta 570, 158–164.
  • Gong H, Sun M, Fan R, Qian L (2013a). One-step preparation of a composite consisting of graphene oxide, Prussian blue and chitosan for electrochemical sensing of hydrogen peroxide, Microchimica Acta 180, 295–301.
  • Gong K (2013b). Vertically-aligned Prussian blue/carbon nanotube nanocomposites on a carbon microfiber as a biosensing scaffold for ultrasensitively detecting glucose, Journal of Colloid and Interface Science 410, 152–157.
  • Hirst NA, Hazelwood LD, Jayne DG, Millner PA (2013). An amperometric lactate biosensor using H2O2 reduction via a Prussian Blue impregnated poly(ethyleneimine) surface on screen printed carbon electrodes to detect anastomotic leak and sepsis, Sensors and Actuators B: Chemical 186, 674–680.
  • Huang J, Li J, Yang Y, Wang X, Wu B, Anzai J, Osa T, Chen Q (2008). Development of an amperometric L-lactate biosensor based on L-lactate oxidase immobilized through silica sol– gel film on multi-walled carbon nanotubes/platinum nanoparticle modified glassy carbon electrode, Materials Science and Engineering C 28, 1070–1075.
  • Iwuoha EI, Rock A, Smyth MR (1999). Amperometric L-Lactate Biosensors: 1. Lactic acid sensing electrode containing lactate oxidase in a composite poly-L-lysine matrix, Electroanalysis 1999, 11(5) 367–373.
  • Kaçar C, Dalkiran B, Erden PE, Kiliç E (2014). An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode, Applied Surface Science 311, 139–146.
  • Karyakin AA, Karyakina EE, Gorton L (2000). Amperometric biosensor for glutamate using prussian blue-based “artificial peroxidase” as a transducer for hydrogen peroxide, Analytical Chemistry 72, 1720–1723.
  • Kaushik A, Khan R, Solanki PR, Pandey P, Alam J, Ahmad S, Malhotra BD (2008). Iron oxide nanoparticles–chitosan composite based glucose biosensor, Biosensors and Bioelectronics 24, 676–683.
  • Lillis B, Grogan C, Berney H, Lane WA (2000). Investigation into immobilisation of lactate oxidase to improve stability, Sensors and Actuators B: Chemical 68, 109–114.
  • Molina CR, Boujtita M, Murr NE (1999). A carbon paste electrode modified by entrapped toluidine blue-O for amperometric determination of L-lactate, Analytica Chimica Acta 401, 155–162.
  • Molinero-Abad B, Alonso-Lomillo MA, Domínguez-Renedo O, Arcos-Martínez MJ (2014). Malate quinone oxidoreductase biosensors based on tetrathiafulvalene and gold nanoparticles modified screen-printed carbon electrodes for malic acid determination in wine, Sensors and Actuators B: Chemical 202, 971–975.
  • Monosik R, Stredansky M, Greif G, Sturdik E (2012). A rapid method for determination of L- lactic acid in real samples by amperometric biosensor utilizing nanocomposite, Food Control 23, 238–244.
  • Monson RS, Collins TS, Waterhouse AL (1997). Artifactual signal splitting in the capillary electrophoresis analysis of organic acids in wine, Analytical Letters 30, 1753–1759.
  • Niu J, Lee JY (2000). Bulk-modified amperometric biosensors for hypoxanthine based on sol– gel technique, Sensors and Actuators B: Chemical 62, 190–198.
  • Pereira AC, Aguiar MR, Kisner A, Macedo DV, Kubota LT (2007). Amperometric biosensor for lactate based on lactate dehydrogenase and Meldola Blue coimmobilized on multi-wall carbon-nanotube. Sensors and Actuators B: Chemical 124, 269–276.
  • Pereira AC, Kisner A, Tarley CRT, Kubota LT (2011). Development of a carbon paste electrode for lactate detection based on Meldola’s blue adsorbed on silica gel modified with niobium oxide and lactate oxidase, Electroanalysis 23(6), 1470–1477.
  • Perez S, Sanchez S, Fabregas E (2012). Enzymatic strategies to construct L-lactate biosensors based on polysulfone/carbon nanotubes membranes, Electroanalysis 24(4), 967–974.
  • Przybyt M, Iciek J, Papiewska A, Biernasiak J (2010). Application of biosensors in early detection of contamination with lactic acid bacteria during apple juice and concentrate production, Journal of Food Engineering 99, 485–490.
  • Radoi A, Moscone D, Palleschi G (2010). Sensing the lactic acid in probiotic yogurts using an L-lactate biosensor coupled with a microdialysis fiber inserted in a flow analysis system, Analytical Letters 43, 1301–1309.
  • Rahman MM, Shiddiky MJA, Rahman MdA, Shim YB (2009). A lactate biosensor based on lactate dehydrogenase/nictotinamide adenine dinucleotide (oxidized form) immobilized on a conducting polymer/multiwall carbon nanotube composite film, Analytical Biochemistry 384, 159–165.
  • Serafín V, Hernández P, Agüí L, Yáñez-Sedeño P, Pingarrón JM (2013). Electrochemical biosensor for creatinine based on the immobilization of creatininase, creatinase and sarcosine oxidase onto a ferrocene/horseradish peroxidase/gold nanoparticles/multi-walled carbon nanotubes/Teflon composite electrode, Electrochimica Acta 97, 175–183.
  • Shimomuraa T, Sumiya T, Ono M, Ito T, Hanaoka T (2012). Amperometric l-lactate biosensor based on screen-printed carbon electrode containing cobalt phthalocyanine, coated with lactate oxidase-mesoporous silica conjugate layer, Analytica Chimica Acta 714, 114–120.
  • Suman, Pundir CS (2005). Determination of serum lactate with alkylamine glass bound lactate oxidase, Indian Journal of Biochemistry and Biophysics 42(3), 186–189.
  • Wang S, Tan Y, Zhao D, Liu G (2008). Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles–chitosan nanocomposite, Biosensors and Bioelectronics 23, 1781–1787.
  • Wang YT, Yu L, Wang J, Lou L, Du WJ, Zhu ZQ, Peng H, Zhu JZ (2011). A novel L-lactate sensor based on enzyme electrode modified with ZnO nanoparticles and multiwall carbon nanotubes, Journal of Electroanalytical Chemistry 661, 8–12.
  • Yang L, Ren X, Tang F, Zhang L (2009). A practical glucose biosensor based on Fe3O4 nanoparticles and chitosan/nafion composite film, Biosensors and Bioelectronics 25, 889– 895.
  • Zanini VP, Mishima BL, Solis V (2011). An amperometric biosensor based on lactate oxidase immobilized in laponite–chitosan hydrogel on a glassy carbon electrode. Application to the analysis of l-lactate in food samples, Sensors and Actuators B: Chemical 155, 75–80.
  • Zhao Y, Yan X, Kang Z, Fang X, Zheng X, Zhao L, Du H, Zhang Y (2014). Zinc oxide nanowires-based electrochemical biosensor for L-lactic acid amperometric detection, Journal of Nanoparticle Research 16, 1–9.